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Introduction

In this opening chapter, we give an informal and qualitative overview – a pep talk –
to help you appreciate why sustained nonequilibrium systems are so interesting and
worthy of study.

We begin in Section 1.1 by discussing the big picture of how the Universe is filled
with nonequilibrium systems of many different kinds, a consequence of the fact
that the Universe had a beginning and has not yet stopped evolving. A profound and
important question is then to understand how the observed richness of structure in
the Universe arises from the property of not being in thermodynamic equilibrium.
In Section 1.2, a particularly well studied nonequilibrium system, Rayleigh–Bénard
convection, is introduced to establish some vocabulary and insight regarding what
is a nonequilibrium system. Next, in Section 1.3, we extend our discussion to
representative examples of nonequilibrium patterns in nature and in the labora-
tory, to illustrate the great diversity of such patterns and to provide some concrete
examples to think about. These examples serve to motivate some of the central ques-
tions that are discussed throughout the book, e.g. spatially dependent instabilities,
wave number selection, pattern formation, and spatiotemporal chaos. The humble
desktop-sized experiments discussed in this section, together with theory and sim-
ulations relating to them, can also be regarded as the real current battleground for
understanding nonequilibrium systems since there is a chance to compare theory
with experiment quantitatively.

Next, Section 1.4 discusses some of the ways that pattern-forming nonequilib-
rium systems differ from the low-dimensional dynamical systems that you may
have seen in an introductory nonlinear dynamics course. Some guidelines are also
given to determine qualitatively when low-dimensional nonlinear dynamics may
not suffice to analyze a particular nonequilibrium system. In Section 1.5, a strategy
is given and explained for exploring nonequilibrium systems. We explain why fluid
dynamics experiments have some advantages over other possible experimental sys-
tems and why certain fluid experiments such as Rayleigh–Bénard convection are
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especially attractive. Finally, Section 1.6 mentions some of the topics that we will
not address in this book for lack of time or expertise.

1.1 The big picture: why is the Universe not boring?

When people look at the world around them or peer through telescopes at outer
space, a question that sometime arises is: why is there something rather than noth-
ing? Why does our Universe consist of matter and light rather than being an empty
void? While this question remains unanswered scientifically and is intensely pur-
sued by researchers in particle physics and cosmology, in this book we discuss
a second related question that is also interesting and fundamental: why does the
existing matter and light have an interesting structure? Or more bluntly: why is the
Universe not boring?

For it turns out that it is not clear how the existence of matter and light, together
with the equations that determine their behavior, produce the extraordinary com-
plexity of the observed Universe. Instead of all matter in the Universe being clumped
together in a single black hole, or spread out in a featureless cloud, we see with our
telescopes a stunning variety of galaxies of different shapes and sizes. The galax-
ies are not randomly distributed throughout space like molecules in a gas but are
organized in clusters, the clusters are organized in super-clusters, and these super-
clusters themselves are organized in voids and walls. Our Sun, a fairly typical star
in a fairly typical galaxy, is not a boring spherical static ball of gas but a complex
evolving tangled medium of plasma and magnetic fields that produces structure in
the form of convection cells, sunspots, and solar flares. Our Earth is not a boring
homogeneous static ball of matter but consists of an atmosphere, ocean, and rocky
mantle that each evolve in time in an endless never-repeating dynamics of weather,
water currents, and tectonic motion. Further, some of the atoms on the surface of
our Earth have organized themselves into a biosphere of life forms, which we as
humans particularly appreciate as a source of rich and interesting structure that
evolves dynamically. Even at the level of a biological organism such as a mammal,
there is further complex structure and dynamics, e.g. in the electrical patterns of
the brain and in the beating of the heart.

So again we can ask: why does the matter and light that exist have such interesting
structure? As scientists, we can ask further: is it possible to explain the origin of
this rich structure and how it evolves in time? In fact, how should we define or
quantify such informal and qualitative concepts such as “structure” or “patterns”
or “complexity” or “interesting?” On what details does this complexity depend and
how does this complexity change as various parameters that characterize a system
are varied?
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While this book will explain some of what is known about these questions, espe-
cially at the laboratory level which allows controlled reproducible experiments, we
can say at a hand-waving level why the Universe is interesting rather than boring:
the Universe was born in a cosmological Big Bang and is still young when measured
in units of the lifetime of a star. Thus the Universe has not yet lasted long enough to
come to thermodynamic equilibrium: the Universe as a whole is a nonequilibrium
system. Because stars are young and have not yet reached thermodynamic equilib-
rium, the nuclear fuel in their core has not yet been consumed. The flux of energy
from this core through the surface of the star and out into space drives the complex
dynamics of the star’s plasma and magnetic field. Similarly, because the Earth is
still geologically young, its interior has not yet cooled down and the flux of heat
from its hot core out through its surface, together with heat received from the Sun,
drives the dynamics of the atmosphere, ocean, and mantle. And it is this same flux
of energy from the Earth and Sun that sustains Earth’s intricate biosphere.

This hand-waving explanation of the origin of nonequilibrium structure is
unsatisfactory since it does not lead to the quantitative testing of predictions by
experiment. To make progress, scientists have found it useful to turn to desktop
experimental systems that can be readily manipulated and studied, and that are also
easier to analyze mathematically and to simulate with a computer. The experiments
and theory described in this book summarize some of the systematic experimental
and theoretical efforts of the last thirty years to understand how to predict and to
analyze such desktop nonequilibrium phenomena. However, you should appreciate
that much interesting research remains to be carried out if our desktop insights are
to be related to the more complex systems found in the world around us. We hope
that this book will encourage you to become an active participant in this challenging
endeavor.

1.2 Convection: a first example of a nonequilibrium system

Before surveying some examples that illustrate the diversity of patterns and dynam-
ics in natural and controlled nonequilibrium systems, we first discuss a particular
yet representative nonequilibrium system, a fluid dynamics experiment known as
Rayleigh–Bénard convection. Our discussion here is qualitative since we wish to
impart quickly some basic vocabulary and a sense of the interesting issues before
turning to the examples discussed in Section 1.3 below. We will return to con-
vection many times throughout the book, since it is one of the most thoroughly
studied of all sustained nonequilibrium systems, and has repeatedly yielded valuable
experimental and theoretical insights.

A Rayleigh–Bénard convection experiment consists of a layer of fluid, e.g. air
or water, between two horizontal plates such that the bottom plate is warm and
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Fig. 1.1 Rayleigh–Bénard convection of a fluid layer between two horizontal
plates is one of the simplest sustained nonequilibrium systems. The drawing shows
a featureless square room of lateral width L and height d with copper-covered floor
and ceiling, and supporting walls made of wood. By appropriate plumbing and
control circuits, the floor and ceiling are maintained at constant temperatures of T1
and T2 respectively. When the temperature difference �T = T1 −T2 is sufficiently
large, the warm less-dense air near the floor and the cold more-dense air near the
ceiling spontaneously start to move, i.e. convection sets in. The rising and falling
regions of air eventually forms cellular structures known as convection rolls. The
characteristic roll size is about the depth d of the air.

the upper plate is cool. As an example to visualize (but a bit impractical for actual
experimentation as you will discover in Exercise 1.5), consider a square room whose
lateral width L is larger than its height d , and in which all furniture, doors, win-
dows, and fixtures have been removed so that there is only a smooth flat horizontal
floor, a smooth flat horizontal ceiling, and smooth flat vertical walls (see Fig. 1.1).
The floor and ceiling are then coated with a layer of copper, and just beneath the
floor and just above the ceiling some water-carrying pipes and electronic circuits
connected to water heaters are arranged so that the floor is maintained at a constant
temperature T1 and the ceiling is maintained at a constant temperature T2.1 Because
copper conducts heat so well, any temperature variations within the floor or within
the ceiling quickly become negligible so that the floor and ceiling can be considered
as time-independent constant-temperature surfaces. The supporting sidewalls are
made of some material that conducts heat poorly such as wood or Plexiglas.

A typical nonequilibrium experiment for the room in Fig. 1.1 would then be
simply to fix the temperature difference �T = T1 − T2 at some value and then
to observe what happens to the air. “Observe what happens” can mean several

1 Uniformly warming the floor and cooling the ceiling is not the usual way that a room is heated. Instead, a
convector – a localized heat source with a large surface area – is placed somewhere in the room, and heat is lost
through the windows instead of through the ceiling. (What we call a convector everyone else calls a radiator
but this is poorly named since the air is heated mainly by convection, not by radiation.) But this nonuniform
geometry is more complicated, and so less well suited, than our idealized room for experiment and analysis.
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things depending on the questions of interest. By introducing some smoke into the
room, the pattern of air currents could be visualized. A more quantitative obser-
vation might involve recording as a function of time t some local quantity such
as the temperature T (x0, t) or the x-component of the air’s velocity vx(x0, t) at a
particular fixed position x0 = (x0, y0, z0) inside the room. Alternatively, an experi-
mentalist might choose to record some global quantity such as the total heat H (t)
transported from the floor to the ceiling, a quantity of possible interest to mechan-
ical engineers and architects. These measurements of some quantity at successive
moments of time constitute a time series that can be stored, plotted, and analyzed.
A more ambitious and difficult observation might consist of measuring multivariate
time series, e.g. measuring the temperature field T (x, t) and the components of the
velocity field v(x, t) simultaneously at many different spatial points, at successive
instants of time. These data could then be made into movies or analyzed statisti-
cally. All of these observations are carried out for a particular fixed choice of the
temperature difference �T and over some long time interval (long enough that
any transient behavior will decay sufficiently). Other experiments might involve
repeating the same measurements but for several successive values of �T , with each
value again held constant during a given experiment. In this way, the spatiotemporal
dynamical properties of the air in the room can be mapped out as a function of the
parameter �T , and various dynamical states and transitions between them can be
identified.

The temperature difference �T is a particularly important parameter in a convec-
tion experiment because it determines whether or not the fluid is in thermodynamic
equilibrium. (It is precisely the fact that the nonequilibrium properties of the entire
room can be described by a single parameter �T that constitutes the idealization
of this experiment, and that motivated the extra experimental work of coating the
floor and ceiling with copper.) If �T = 0 so that the ceiling and floor have the
same common temperature T = T1 = T2, then after some transient time, the air will
be in thermodynamic equilibrium with zero velocity and the same uniform temper-
ature T throughout. There is typically a transient time associated with approaching
thermodynamic equilibrium because the air itself is rarely in such equilibrium with-
out taking special precautions. For example, there might be a small breeze in the
air when the door to the experimental room is closed or some part of the air may
be a bit warmer than some other part because someone walked through the room.
But as long as the room is sealed and the floor and ceiling have the same tempera-
ture, all macroscopic motion in the air will die out and the air will attain the same
temperature everywhere.

As soon as the temperature difference �T becomes nonzero (with either sign),
the air can no longer be in thermodynamic equilibrium since the temperature is
spatially nonuniform. One says that the air is driven out of equilibrium by the
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temperature difference since the nonequilibrium state is maintained as long as there
is a temperature difference. For the case �T > 0 of a warm floor and cool ceiling,
as �T becomes larger and larger (but again held constant throughout any particular
experiment), more and more energy flows through the air from the warm floor to
the cooler ceiling, the system is driven further from equilibrium, and more and
more complicated spatiotemporal dynamical states are observed. A temperature
difference is not the only way to drive a system out of equilibrium as we will
discuss in other parts of the book. Other possibilities include inducing relative
motion (e.g. pushing water through a pipe which creates a shear flow), varying
some parameter in a time-dependent fashion (e.g. shaking a cup of water up and
down), applying an electrical current across an electrical circuit, maintaining one
or more chemical gradients, or creating a deviation from a Maxwellian velocity
distribution of particles in a fusion plasma.

For any particular mechanism such as a temperature difference that drives a sys-
tem out of equilibrium, there are dissipative (friction-like) mechanisms that oppose
this driving and act in such a way so as to restore the system to equilibrium. For the
air convecting inside our room, there are two dissipative mechanisms that restore
the air to a state of thermodynamic equilibrium if �T is set to zero. One is the
viscosity of the fluid, which acts to decrease any spatial variation of the velocity
field. Since it is known from fluid dynamics that the velocity of a fluid is zero at
a material surface,2 the only possible long-term behavior for a fluid approaching
equilibrium in the presence of static walls is that the velocity field everywhere
decays to zero. A second dissipative mechanism is heat conduction through the air.
The warm regions of air lose heat to the cooler regions of air by molecular dif-
fusion, and eventually the temperature becomes constant and uniform everywhere
inside the room. These dissipative mechanisms of viscosity and heat conduction
are always present, even when �T �= 0, and so one often talks about a sustained
nonequilibrium system as a driven-dissipative system.

Rayleigh–Bénard convection is sometimes called buoyancy-induced convection
for reasons that illustrate a bit further the driving and dissipative mechanisms com-
peting in a nonequilibrium system. Let us consider an experiment in which the air in
the room has reached thermal equilibrium with �T = 0 and then the temperature
difference �T is increased to some positive value. Small parcels of air near the
floor will expand and so decrease in density as they absorb heat from the floor,
while small parcels of air near the ceiling will contract in volume and increase in
density as they lose heat to the ceiling. As illustrated in Fig. 1.2, buoyancy forces
then appear that accelerate the lighter warmer fluid upwards and the heavier colder

2 More precisely, the fluid velocity at a wall is zero in a frame of reference moving with the surface. Exercise 1.9
suggests a simple experiment using an electric fan to explore this point.
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Fig. 1.2 Illustration of the driving and dissipative forces acting on small parcels
of air near the floor and ceiling of the experimental room in Fig. 1.1 whose floor
is warmer than its ceiling. The parcels are assumed to be small enough that their
temperatures are approximately constant over their interiors. The acceleration of
the parcels by buoyancy forces is opposed by a friction arising from the fluid
viscosity and also by the diffusion of heat between warmer and cooler regions of
the fluid. Only when the temperature difference �T = T1 − T2 exceeds a finite
critical value �Tc > 0 can the buoyancy forces overcome the dissipation and
convection currents form.

fluid downwards, in accord with the truism that “hot air rises” and “cold air falls.”
These buoyancy forces constitute the physical mechanism by which the tempera-
ture difference �T “drives” the air out of equilibrium. As a warm parcel moves
upward, it has to push its way through the surrounding fluid and this motion is
opposed by the dissipative friction force associated with fluid viscosity. Also, as
the parcel rises, it loses heat by thermal conduction to the now cooler surrounding
air, becomes more dense, and the buoyancy force is diminished. Similar dissipative
effects act on a cool descending parcel.

From this microscopic picture, we can understand the experimental fact that
making the temperature difference �T positive is a necessary but not sufficient
condition for the air to start moving since the buoyancy forces may not be strong
enough to overcome the dissipative effects of viscosity and conduction. Indeed,
experiment and theory show that only when the temperature difference exceeds a
threshold, a critical value we denote as �Tc, will the buoyancy forces be sufficiently
large that the air will spontaneously start to move and a persistent spatiotemporal
structure will appear in the form of convection currents. If the room’s width L is
large compared to its depth d so that the influence of the walls on the bulk fluid
can be ignored, a precise criterion for the onset of convection can be stated in
the form

R > Rc. (1.1)
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Table 1.1. The isobaric coefficient of thermal expansion α, the kinematic
viscosity ν, and the thermal diffusivity κ for air, water, and mercury at
room temperature T = 293 K and at atmospheric pressure. These
parameters vary weakly with temperature.

Fluid α (K−1) ν (m2/s) κ (m2/s)

Air 3 × 10−3 2 × 10−5 2 × 10−5

Mercury 2 × 10−4 1 × 10−7 3 × 10−6

Water 2 × 10−4 1 × 10−6 2 × 10−7

The parameter R is defined in terms of various physical parameters

R = αgd3�T

νκ
, (1.2)

and the critical value of R has the approximate value

Rc ≈ 1708. (1.3)

The parameters in Eq. (1.2) have the following meaning: g is the gravitational accel-
eration, about 9.8 m/s2 over much of the Earth’s surface; α = −(1/ρ)(∂ρ/∂T )|p
is the fluid’s coefficient of thermal expansion at constant pressure, and measures
the relative change in density ρ as the temperature is varied; d is the uniform depth
of the fluid; �T is the uniform temperature difference across the fluid layer; ν is
the fluid’s kinematic viscosity; and κ is the fluid’s thermal diffusivity. Approximate
values of the parameters α, ν, and κ for air, water, and mercury at room temperature
(T = 293 K) and at atmospheric pressure are given in Table 1.1.

The combination of physical parameters in Eq. (1.2) is dimensionless and so has
the same value no matter what physical units are used in any given experiment,
e.g. System Internationale (SI), Centimeter-Gram-Seconds (CGS), or British. This
combination is denoted by the symbol “R” and is called the Rayleigh number in
honor of the physicist and applied mathematician Lord Rayleigh who, in 1916, was
the first to identify its significance for determining the onset of convection. The pure
number Rc is called the critical Rayleigh number Rc since it denotes the threshold
that R must exceed for convection to commence. The value Rc can be calculated
directly from the equations that govern the time evolution of a convecting fluid
(the Boussinesq equations) as the criterion when the motionless conducting state of
the fluid first becomes linearly unstable. The general method of this linear stability
analysis is described in Chapter 2.
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Despite its dependence on six parameters, you should think of the Rayleigh
number R as simply being proportional to the temperature difference �T . The
reason is that all the parameters in Eq. (1.2) except �T are approximately constant
in a typical series of convection experiments. Thus the parameters α, ν, and κ in
Eq. (1.1) depend weakly on temperature and are effectively fixed once a particular
fluid is chosen. The acceleration g is fixed once a particular geographical location
is selected for the experiment and the depth of the fluid d is typically fixed once
the convection cell has been designed and is difficult to vary as an experimental
parameter. Only the temperature difference �T is easily changed substantially and
so this naturally becomes the experimental control parameter.

You should also note that the numerator αgd3�T in Eq. (1.2) is related to quanti-
ties that determine the buoyancy force, while the denominatorνκ involves quantities
related to the two dissipative mechanisms so Eq. (1.1) indeed states that instability
will not occur until the driving is sufficiently strong compared to the dissipation.
Most nonequilibrium systems have one or more such dimensionless parameters
associated with them and these parameters are key quantities to identify and to
measure when studying a nonequilibrium system.

What kind of dynamics can we expect for the air if the Rayleigh number R is
held constant at some value larger than the critical value Rc? From Fig. 1.2, we
expect the warm fluid near the floor to rise and the cool fluid near the ceiling to
descend but the entire layer of ascending fluid near the floor cannot pass through the
entire layer of descending fluid near the ceiling because the fluid is approximately
incompressible. What is observed experimentally is pattern formation: the fluid
spontaneously achieves a compromise such that some regions of fluid rise and
neighboring regions descend, leading to the formation of a cellular convection
“pattern” in the temperature, velocity, and pressure fields. The distance between
adjacent rising and falling regions turns out to be about the depth of the air. Once
the air begins to convect, the dynamics becomes too complicated to understand by
casual arguments applied to small parcels of air and we need to turn to experiments
to observe what happens and to a deeper mathematical analysis to understand the
experimental results (see Figs. 1.14 and 1.15 below in Section 1.3.2). However, one
last observation can be made. The motion of the fluid parcels inside the experimental
system transport heat and thereby modify the temperature gradient that is felt in a
particular location inside the system. Thus the motion of the medium changes the
balance of driving and dissipation in different parts of the medium, and this is the
reason why the dynamics is nonlinear and often difficult to understand.

The general points we learn from the above discussion about Rayleigh–Bénard
convection are the following. There are mechanisms that can drive a system out of
thermodynamic equilibrium, such as a flux of energy, momentum or matter through
the system. This driving is opposed by one or more dissipative mechanisms such
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as viscous friction, heat conduction, or electrical resistance that restore the sys-
tem to thermal equilibrium. The relative strength of the driving and dissipative
mechanisms can often be summarized in the form of one or more dimensionless
parameters, e.g. the Rayleigh number R in the case of convection. Nonequilibrium
systems often become unstable and develop an interesting spatiotemporal pattern
when the dimensionless parameter exceeds some threshold, which we call the crit-
ical value of that parameter. What happens to a system when driven above this
threshold is a complex and fascinating question which we look at visually in the
next section and then discuss in much greater detail throughout the rest of the book.
However, the origin of the complexity can be understood qualitatively from the fact
that transport of energy and matter by different parts of the pattern locally modifies
the balance of driving and dissipation, which in turn may change the pattern and
the associated transport.

1.3 Examples of nonequilibrium patterns and dynamics

1.3.1 Natural patterns

In this section we discuss examples of pattern-forming nonequilibrium systems as
found in nature while in the next section we look at prepared laboratory systems,
such that a nonequilibrium system can be carefully prepared and controlled. These
examples help to demonstrate the great variety of dynamics observed in pattern-
forming nonequilibrium systems and provide concrete examples to keep in mind
as we try to identify the interesting questions to ask.

We begin with phenomena at some of the largest length and time scales of the
Universe and then descend to human length and time scales. An example of an
interesting pattern on the grandest scales of the Universe is the recently measured
organization of galaxies into sheets and voids shown in Fig. 1.3. Observation has
shown that our Universe is everywhere expanding, with all faraway galaxies moving
away from each other and from the Earth, and with the galaxies that are furthest
away moving the fastest. The light from a galaxy that is moving away from Earth
is Doppler-shifted to a longer wavelength (becomes more red) compared to the
light coming from an identical but stationary galaxy. By measuring the extent to
which known spectral lines are red-shifted, astronomers can estimate the recessional
speed v of a galaxy and convert this speed to a distance d by using the so-called
Hubble law v = H0d , where the Hubble constant H0 has the approximate value
65 km s−1 Mpc−1 (and a megaparsec Mpc is about 3 × 1019 km or about 3 × 106

light years).
Figure 1.3 summarizes such distance measurements for about 100 000 galaxies

out to the rather extraordinary distance of about four billion light years which is
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Fig. 1.3 Spatial distribution of 106 688 galaxies as measured in the 2dF (Two-
degree Field) Galaxy Redshift survey out to a depth of over 4 billion light years
from Earth. The left and right halves represent investigations over two separate
arcs of the sky; the angles indicate astronomical declination, which is the angular
latitude of a celestial object north or south of the celestial equator. Each point
represents a galaxy whose distance from Earth is indicated in billions of light
years or equivalently in terms of its redshift z = �λ/λ = v/c of the galaxy’s
light spectrum, where v is the velocity of recession from Earth. The distribution
of galaxies is a nonuniform fractal-like structure with huge voids and walls.

comparable to the size of the Universe itself. Rather surprisingly, the galaxies do not
fill space uniformly like molecules in a gas but instead are clustered in sheets and
walls with large voids (relatively empty regions of space) between them. Here the
pattern is not a geometric structure (e.g. a lattice) but a statistical deviation from
randomly and uniformly distributed points that is difficult for the human visual
system to quantify. Perhaps the closest earthly analogy would be a foam of bubbles
in which the galaxies are concentrated on the surfaces of the bubbles. The reason
for this galactic structure is not known at this time but is presumably a consequence
of the details of the Big Bang (when matter first formed), the expansion of the
Uuniverse, the effects of gravity, and the effects of the mysterious dark matter that
makes up most of the mass of the Universe but which has not yet been directly
observed or identified.

Asecond example of grand pattern formation is the M74 galaxy shown in Fig. 1.4.
Now a galaxy consists of a huge number of about 1010 stars and has a net angular
momentum from the way it was born by the condensation of a large hydrogen cloud.
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Fig. 1.4 Photograph of the M74 spiral galaxy, a gravitationally bound island of
100 billion stars, approximately 100 000 light years wide, that lies about 35 000 000
light years from Earth in the Pisces constellation. Why galaxies form in the
first place and why they appear in spiral, elliptical, and irregular forms remains
incompletely understood. (Gemini Observatory, GMOS team.)

From just these facts, you might expect galaxies to be rotating featureless blobs of
stars with a mass density that varies monotonically as a function of radius from the
center. Such blobs do in fact exist and are known as elliptical galaxies. However
many galaxies do have a nonuniform mass density in the form of two or more spiral
arms as shown in Fig. 1.4. Our own galaxy, the Milky Way, is such a spiral galaxy
and our Solar System lives in one of its high-density spiral arms.

Why galaxies evolve to form spiral arms is poorly understood and is an important
open question in current astrophysical research. As we will see in the next section
and in Chapter 11, laboratory experiments show that spiral formation is common
for nonequilibrium media that have a tendency to oscillate in time or that support
wave propagation. Further, experiments show that a tendency to form spirals is
insensitive to details of the medium supporting the spiral. So a galactic spiral may
not be too surprising since there are mechanisms in galaxies that can produce wave
propagation. For example, some researchers have proposed that the spiral arms are
detonation waves of star formation that propagate through the galaxy, somewhat
analogous to the excitation waves observed in the Belousov–Zhabotinsky reaction–
diffusion system shown below in Fig. 1.18 and discussed later in Chapter 11. Some
interesting questions to ask about Fig. 1.4 are what determines the frequency of
rotation of the spiral arms (which is not the same as the orbital rotation rate of the
matter within a spiral arm) and what determines the spiral pitch (how tightly the
spiral is wound)?



1.3 Examples of nonequilibrium patterns and dynamics 13

Fig. 1.5 Photograph of the Sun’s surface in ultraviolet light, showing a complex
time-dependent granular structure. The small bright regions are granules approx-
imately 1000 km across (the Sun itself is about 100 Earth diameters in size) and
correspond to hot plasma rising from the interior while the darker borders of the
granules correspond to cooler plasma descending back to the interior. The filamen-
tary structure exuding from the surface are plasma filaments following magnetic
field lines.

Figure 1.5 descends from the scale of a galaxy to that of a star and shows a
snapshot of the ultraviolet light emitted from the highly turbulent plasma in the
so-called photosphere of the Sun. Heat diffuses by collisions from the Sun’s small
dense and extremely hot core (20 million degrees Kelvin) out to about two-thirds
of the radius of the Sun, at which point the heat is transported to the cooler surface
(about 6000 K) by convective motion of the Sun’s plasma. The small bright dots
in Fig. 1.5 are 1000 km-sized features called “granules” and correspond to the top
of convection cells, the darker boundaries are where the cooler plasma descends
back into the interior. The Rayleigh number R in Eq. (1.1) can be estimated for
this convecting plasma and turns out to have the huge value of 1012 so Fig. 1.5
represents a very strongly driven nonequilibrium system indeed.

Figure 1.5 and related movies of the Sun’s surface suggest many interesting
questions related to pattern formation, many of which are not yet answered. One
question is that of what determines the distributions of the sizes and lifetimes of the
granules.Another question is that of how any organized structure persists at all since,
at any given point, the plasma is varying rapidly and chaotically. Other solar images
show that the smallest granules are found to cluster together to form convective
structures called super-granules which may be 30 times larger on average. Why
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does this happen and what determines this new length scale? And what is the role
of the magnetic field in all of this? Unlike the convecting air in Fig. 1.1, the Sun’s
plasma is a highly conducting electrical medium and its motion is influenced by
the Sun’s magnetic field (by a Lorentz force acting on currents in the plasma) and
the magnetic field in turn is modified by the motion of the plasma (by Ampère’s
law, since currents generate a magnetic field). The magnetic field is known to be
especially important for understanding the occurrence of sunspots, whose number
varies approximately periodically with a 22-year cycle. There is evidence that the
Earth’s climate is partly influenced by the average number of sunspots and so a
full understanding of the weather may require a deeper understanding of the Sun’s
spatiotemporal dynamics.

Our next example of pattern formation should be familiar to readers who have
followed the observations of the planet Jupiter by the Voyager spacecraft and by the
Hubble Space Telescope. Figure 1.6 shows a photograph of Jupiter in which one can
see a nonequilibrium striped pattern that is common to all of the gas giants (Jupiter,
Saturn, Neptune, and Uranus). Careful observation of the bands and of their dynam-
ics shows that they are highly turbulent time-dependent flows of the outer portion
of Jupiter’s atmosphere, with adjacent bands flowing in opposite directions with
respect to Jupiter’s axis of rotation. Again numerous questions suggest themselves
such as why do the bands form, what determines their wavelength of approximate

Fig. 1.6 (a) Photograph of the planet Jupiter (about 11 Earth diameters in size),
showing a colored banded nonequilibrium structure. Such bands and spots are
common to all the outer gaseous planets and arise from convection together with
shear flow driven by the planet’s rotation. (b) Blow-up of the famous great Red
Spot, which is about the same size as the Earth. The persistence over many centuries
of this turbulent spot within the surrounding turbulent atmosphere remains an
intriguing mystery.
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periodicity (their spacing is fairly uniform across the planet), and how do such
bands survive in such a highly fluctuating fluid medium? The Red Spot and other
similar spots pose a problem of their own, namely how do such large localized
features (which are themselves time-dependent and strongly turbulent) survive in
the middle of such a strongly fluctuating time-dependent fluid? The Red Spot was
first observed by Galileo in the 1500s and so has been a persistent feature for at
least 500 years.

The mechanisms that drive these nonequilibrium stripes and spots are not hard
to identify. Jupiter’s core is known to be hot and the transport of heat from the
core out through its atmosphere causes convection in the outermost layer, just as
in Fig. 1.1. However, the convection is substantially modified by Jupiter’s rapid
rotation around its axis, about once every 10 hours. As warm and cold parcels of
fluid rise and descend, they are pushed to the side by large Coriolis forces and so
follow a spiraling path.

We next turn to terrestrial examples of natural pattern formation and dynamics.
While visiting a beach or desert, you have likely seen nonequilibrium pattern for-
mation in the form of approximately periodic ripples found in sand dunes or sand
bars, an example of which is shown in Fig. 1.7(a). The driven-dissipative nature
of sand ripples is readily understood although the particular details of this pattern
formation are not. The driving comes from wind (or water) flowing over the sand.
When moving fast enough, the wind lifts sand grains into the air, transferring trans-
lational and rotational energy to them. These grains eventually fall back to earth
and dissipate their energy into heat by friction as they roll and rub against other
sand grains. The formation of nearly regular stripes is understood in rough outline,
both from laboratory experiments and from computer simulations that can track
the motion of tens of thousands of mathematical grains that collide according to
specified rules. One surprise that came out of studying the stripes in sand dunes is
that there is not a well-defined average wavelength as is the case for a convection
pattern, for which the average wavelength is determined simply by the depth of
the fluid. Instead, the average wavelength grows slowly with time, and can achieve
kilometer length scales as shown in the Martian sand dunes of Fig. 1.7(b).

Another familiar and famous terrestrial example of pattern formation is a
snowflake (see Fig. 1.8). This is a nonequilibrium system rather different than
any described so far in that the pattern is formed by crystalline dendrites (these are
the needle-like branches of a snowflake) that grow into the surrounding air. Unlike
a convecting fluid in a fixed geometric box, the dendrite’s shape itself changes
as the system evolves. The nonequilibrium driving for snowflake formation is the
presence of air that is supersaturated with water vapor. (In contrast, an equilibrium
state would involve a static ice crystal in contact with saturated water vapor.) Each
tip of the snowflake grows by adsorbing water molecules onto its surface from the
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(a)

(b)

Fig. 1.7 (a) Pattern formation in wind-swept sand at the Mesquite Flat Sand Dunes
in Death Valley, California. The ripple spacing is about 10 cm. The foreground of
the picture is the top of a dune, and the remainder shows ripples on the valley floor.
(Photo by M. C. Cross.) (b) Sand dunes in the Proctor Crater on Mars, as taken by
the Mars Global Surveyor spacecraft in September of 2000 (Malin Space Science
Systems). The average distance between dune peaks is about 500 m.

surrounding air, and the rate at which the tip grows and its shape are determined in
a complex way by how rapidly water molecules in the surrounding air can diffuse
to the crystalline tip, and by how rapidly the heat released by adsorption can be
dissipated by diffusion within the air.

There are many fascinating questions associated with how snowflakes form. For
example, what determines the propagation speed of the tip of a dendrite and is
there a unique speed for fixed external conditions? Is there a unique shape to the
tip of a dendrite and on what details does this shape depend? Why are the arms
of a snowflake approximately the same length and have approximately the same
intricate shape but are not exactly identical? And what causes the formation of
the side-branches, whose rich spatial structure is such that no two snowflakes are
presumably ever alike? Scientists have made progress over the last twenty years in
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Fig. 1.8 Photographs by Kenneth Libbrecht of three snowflakes. The over-
all hexagonal symmetry reflects the underlying crystalline structure of water
molecules while the intricate structure of the similar but not identical branches
is a consequence of the instability of the dendritic tips, which propagate at an
approximately constant speed into the surrounding supersaturated water vapor.
(Photos courtesy of Kenneth Libbrecht.)

answering many of these questions. As a result of this progress, snowflakes rank
among the best understood of all nonequilibrium systems.

Beyond their aesthetic beauty, you should appreciate that snowflakes belong to a
technologically valuable class of nonequilibrium phenomena involving the synthe-
sis of crystals and alloys.An example is the creation of meter-sized ultra-pure single
crystal boules of silicon from which computer chips are made. One way to create
such an ultra-pure boule is to pull a crystal slowly out of a rotating and convect-
ing liquid silicon melt. In such a process, scientists and engineers have found that
they need to understand the instabilities and dynamics of the solid–liquid interface
(called a solidification front) since the extent to which undesired impurities can be
prevented from diffusing into and contaminating the crystal depends delicately on
the dynamics of the front. The metals that are the fabric of our modern world are
also usually formed by solidification from the melt. Their strength, flexibility, and
ductility are largely determined by the size and intermingling of small crystalline
grains rather than by the properties of the ideal crystal lattice. This microstruc-
ture depends sensitively on the nonequilibrium growth process, for example how
the solidification fronts propagate from the many nucleation sites. The tip of a
snowflake dendrite is also a solidification front (although now between a solid and
gas) and basic research on snowflakes has provided valuable insights for these other
more difficult technological problems.

We turn finally to two examples of biological natural patterns and dynamics. A
heroine of biological pattern formation is the slime mold Dictyostelium discoideum,
which is a colony of tiny amoeba-like creatures – each about 10 microns in size –
that live on forest floors. These cells spend most of their lives as solitary creatures
foraging for food but when food becomes scarce, the cells secrete an attractant
(cyclicAMP) into their environment that triggers pattern formation and the eventual
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aggregation of about 105 cells into a central mass. (This mass later evolves into
a multicellular structure that can distribute cells to new regions where resources
may be available, but that is another story.) Of interest to us is the spontaneous
spatiotemporal pattern of propagating spiral waves of cells that is observed in the
early stages of aggregation (Fig. 1.9). This pattern turns out to be remarkably similar
to that observed in carefully prepared reacting and diffusing inorganic reagents (see
Fig. 1.18(a) below), and you will indeed learn later in Chapter 11 that such multi-
spiral states are observed in many nonequilibrium media and that many details of
such states are understood theoretically.

Experiment and theory have shown that, in rough outline, the slime-mold pattern
arises from a nonlinear dynamics in which cells secrete an attractant, cells move
toward higher concentrations of the attractant (a process known as chemotaxis),
and attractant is destroyed by secretion of an appropriate enzyme. The slime-mold
dynamics is nonequilibrium because there are sustained chemical gradients; tem-
perature and velocity gradients are not important here as they were for a convecting
flow. Figure 1.9 suggests some quantitative questions similar to those suggested by
Fig. 1.4, namely what determines the frequency and velocity of the waves in the
spirals and how do these quantities vary with parameters?And biologists would like
to know why slime molds use this particular spatiotemporal pattern to self-organize
into a new multicellular structure.

Fig. 1.9 Photograph of a starving slime-mold colony in the early stages of aggre-
gation. The cells were placed on an 8-cm-wide caffeine-laced agar dish with
an average density of 106 cells/cm2. The field of view covers 4 cm. The light
regions correspond to elongated cells that are moving with a speed of about
10 microns/minute by chemotaxis toward higher secretant concentrations. The
dark regions correspond to flattened cells that are stationary. The spiral waves
rotate with a period of about 5 minutes. This early aggregation stage persists for
about four hours after which the pattern and cell behavior changes substantially,
forming thread-like streams. (Figure courtesy of Dr. Florian Siegert.)
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Our second biological example of a natural pattern formation is the important
medical problem of ventricular fibrillation. This occurs when the thick muscle tissue
surrounding the left ventricle (the largest of the four heart chambers) enters into
an irregular spatiotemporal electrical state that is no longer under the control of
the heart’s pacemaker (the sinoatrial node). In this fibrillating state, the ventricular
muscle cannot contract coherently to pump blood, and the heart and the rest of
the body start to die from lack of oxygen. A common but not always successful
treatment is to apply a massive electrical current to the heart (via a defibrillator) that
somehow eliminates the irregular electrical waves in the left ventricle and that resets
the heart tissue so that the ventricle can respond once again to the sinoatrial node.

Why the dynamics of the left ventricular muscle sometimes changes from peri-
odic coherent contractions to a higher-frequency nonperiodic incoherent quivering
is still poorly understood. One intriguing observation is that ventricular fibrilla-
tion is observed primarily in mammals whose hearts are sufficiently large or thick.
Thus mice, shrews, and guinea pigs do not easily suffer ventricular fibrillation
while pigs, dogs, horses, and humans do. Experiments, theory, and simulations
have begun to provide valuable insights about the spatiotemporal dynamics of ven-
tricular fibrillation and how it depends on a heart’s size and shape, as well as on
its electrical, chemical, and mechanical properties. An example is Fig. 1.10, taken

Fig. 1.10 Visualization of the surface voltage potential of an isolated blood-
perfused dog heart in a fibrillating state. The surface of the left ventricle was
painted with a dye whose fluorescent properties are sensitive to the local trans-
membrane voltage (which is of order 80 millivolts), and then the fluorescence
under a strong external light source was recorded as a function of time. The waves
propagate at a speed of about 20–40 cm/s (heart tissue is anisotropic and the speed
varies with the direction of propagation), a range that is about the same for most
mammalian hearts. (From Witkowski et al. [114].)
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from a pioneering experiment that visualized the time-dependent voltage pattern on
the surface of a fibrillating dog heart. This electrical pattern is complex and consists
of spiral-like waves that move around, and that sometimes terminate or are created
through collisions with other waves. Since muscle tissue contracts shortly after an
electrical wave front passes through it, the irregular geometric shape of the waves
in Fig. 1.10 explains directly why the heart is not contracting coherently and so has
difficulty pumping blood. The similarity of the dynamics to that observed in slime
molds and in reacting and diffusing chemical solutions is likely misleading. Left
ventricular muscle is a rather thick three-dimensional nonequilibrium medium and
recent theoretical research suggests that the surface patterns in Fig. 1.10 are likely
intersections by the surface of more intricate three-dimensional electrical waves
inside the heart wall that experimentalists have not yet been able to observe directly.

Given that ventricular fibrillation kills over 200 000 people in the United States
each year and is a leading cause of death in industrial countries worldwide, under-
standing the onset and properties of ventricular fibrillation and finding ways to
prevent it remain major medical and scientific goals. Chapter 11 will discuss heart
dynamics in more detail since it turns out to be one of the more exciting current fron-
tiers of nonequilibrium pattern formation and illustrates well many of the concepts
discussed in earlier chapters.

1.3.2 Prepared patterns

The previous section surveyed some of the patterns and dynamics that are observed
in natural nonequilibrium systems. For the most part, these natural systems are
difficult to study and to understand. Unlike the idealized room of convecting air in
Fig. 1.1, natural systems are often inhomogeneous and so difficult to characterize,
they are subject to many different and simultaneous mechanisms of driving and
dissipation (some of which are not known or are not well understood), and some
systems are simply too remote or too big for direct experimental investigation.
In this section, we survey some nonequilibrium phenomena observed in idealized
carefully controlled laboratory experiments and reach the important conclusion that
even such highly simplified systems can produce a dazzling variety of complex
patterns and dynamics, often with properties similar to those observed in natural
systems.

Figure 1.11 shows several patterns and dynamical states in a Taylor–Couette fluid
dynamics experiment. The experiment is named after the French scientist Maurice
Couette who, in the late 1800s, was one of the first to use this apparatus to study
the shearing of a fluid, and after the British scientist Geoffrey Taylor who used this
system in the early 1920s to make the first quantitative comparison in fluid dynamics
of a linear stability analysis with experiment (see Figs. 2.5 and 2.6 in Section 2.4).
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(a) (b) (c)

(d) (e)

Fig. 1.11 Five examples of pattern formation in a Taylor–Couette fluid dynamics
experiment, in which a fluid filling the thin annular gap between two concentric
cylinders is sheared by rotating the inner and outer cylinders at constant but differ-
ent speeds. The flow pattern was visualized by shining light through the transparent
outer cylinder and scattering the light off a low concentration of shiny impurities
such as aluminum flakes. In panels (a)–(d), the outer cylinder is at rest, while the
inner cylinder is rotating at different angular frequencies corresponding respec-
tively to inner Reynolds numbers of Ri/Rc = 1.1, 6.0, 16.0, and 26.5, where Rc is
the critical value at which laminar flow becomes unstable to Taylor cells. The fluid
is water at T = 27.5 ◦C with kinematic viscosity ν = 8.5 × 10−7m2/s. The height
of the two glass cylinders is H = 6.3 cm while the outer and inner radii are respec-
tively r2 = 2.54 cm and r1 = 2.22 cm. Only pattern (a) is time-independent. (e) A
so-called stripe-turbulent state found in a different Couette experiment with param-
eters r1 = 5.3 cm, r2 = 5.95 cm, and H = 20.9 cm. The inner and outer Reynolds
numbers are Ri = 943 and Ro = −3000. (Panels (a)–(d) from Fenstermacher
et al. [35]; panel (e) from Andereck et al. [3].)

Taylor–Couette flow has some similarities to Rayleigh–Bénard convection in that
a fluid like water or air is placed between two walls, here the inner and outer
boundaries of two concentric cylinders (with the outer cylinder usually made of
glass to facilitate visualization). But instead of being driven out of equilibrium by
a temperature gradient, the fluid is driven out of equilibrium by a velocity gradient
that is sustained by using motors and gears to rotate the inner and outer cylinders at
constant angular frequencies ωi and ωo respectively (not necessarily with the same
sign). The fluid temperature is constant throughout.

As was the case for convection, a dimensionless combination of system parame-
ters can be identified as the “stress” parameter that measures the strength of driving
compared to dissipation. When both cylinders are spinning, there are two such
parameters and they are traditionally called the inner and outer Reynolds numbers.
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They have the form

Ri = ωiri(ro − ri)

ν
, Ro = ωoro(ro − ri)

ν
, (1.4)

where ri is the radius of the outer wall of the inner cylinder, ro is the radius of the
inner wall of the outer cylinder, and ν is again the fluid’s kinematic viscosity. Note
that there are many other valid ways to define dimensionless stress parameters here,
e.g. for an inner stress parameter the combinations ωir2

i /ν, ωi(r2
o − r2

i )/ν, or even
(1/2)ω2

i (ro+ri)(ro−ri)
3/ν2 could be used instead. (This last combination is called

the Taylor number and is basically the square of a Reynolds number.) Often the
appropriate choice of a stress parameter is suggested by a linear stability analysis
of the dynamical equations but in some cases the choice is simply set by historical
precedent.

Let us consider first the situation of a fixed outer cylinder so that ωo = 0 and Ro =
0. Then experiments show – in agreement with theory – that the velocity field v of
the fluid is time-independent and featureless3 until the inner Reynolds number Ri

exceeds a critical value Rc ≈ 100. (The specific value of Rc depends on the ratio
of radii ro/ri and on the height of the cylinders.) For R > Rc, interesting patterns
appear and these can be visualized by doping the fluid with a small concentration
of metallic or plastic flakes that reflect external light. Unlike the natural systems
described in the previous section, a Taylor–Couette cell can be accurately controlled
with the temperature, inner and outer radii, and rotational velocities all determined
to a relative accuracy of 1% or better. The results of such experiments are highly
reproducible and so the response of the system to small changes in the parameters
can be carefully and thoroughly mapped out.

Figure 1.11 shows examples of the patterns observed in particular Taylor–Couette
cells of fixed fluid, height, and inner and outer radii, for different constant values
of the Reynolds numbers Ri and Ro. For Ro = 0 and Ri > Rc just larger than
the critical value Rc at which a uniform state becomes unstable, Fig. 1.11(a) shows
that the fluid spontaneously forms a time-independent pattern of uniformly spaced
azimuthally symmetric donut-like cells called Taylor cells. Given the static one-
dimensional nature of this pattern, there is really only one interesting question to ask,
which is the question of wave number selection: what determines the wavelength
of the Taylor cells and is this wavelength unique for fixed external parameters? This
is a basic question in pattern formation, and we will return to it a number of times
in this book.

As the inner Reynolds number Ri is increased further, the static Taylor cells
become unstable to a time-periodic state consisting of waves that propagate around

3 “Featureless” here means that the velocity field v is independent of the azimuthal and axial coordinates and has
a simple monotonic dependence on the radial coordinate.
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each Taylor cell. Such a transition in a dynamical system is often called a bifurca-
tion.4 This regime is called the wavy vortex state, a snapshot of which is shown
in Fig. 1.11(b). The angular frequency of the waves is somewhat less than the
rotational frequency of the inner cylinder and is known experimentally to depend
on the values of the parameters ro, ri, and ν. For still larger Ri, a second Hopf
bifurcation takes place, leading to time-quasiperiodic dynamics and a more com-
plex spatial motion known as the modulated wavy vortex state (see Fig. 1.11(c)).
For still larger values of Ri (see Fig. 1.11(d)), the fluid becomes turbulent in that
the time dependence is everywhere nonperiodic, there is no longer any identifiable
wave motion, and the spatial structure is disordered. Note how one can perceive the
ghostly remains of the Taylor cells in this turbulent regime, raising again a question
similar to the one we asked about the Red Spot of Jupiter, namely how can some
kind of average structure persist in the presence of strong local fluctuations? (A
theoretical understanding of this strongly driven regime has not yet been devel-
oped.) A practical engineering question to answer would be to predict the average
torque on the inner cylinder as a function of the Reynolds number R. How does
the complex fluid motion modify the resistance felt by the motor, which is turning
the inner cylinder at constant speed?

Figure 1.12 summarizes many of the dynamical states that have been discovered
experimentally in Taylor–Couette flows for different values of the inner and outer
Reynolds numbers.5 This figure raises many interesting questions. Where do all
these different states come from and are these the only ones that can occur? Is
the transition from one state to another, say from Couette flow to Taylor vortex
flow or from spiral turbulence to featureless turbulence, similar to an equilibrium
phase transition corresponding to the melting of a crystal to form a liquid or the
evaporation of a liquid to form a gas? Little is known about most of these states
and their transitions. One of the few theoretical successes is the heavy black line,
which Taylor predicted in 1923 as the boundary separating the featureless laminar
regime of Couette flow from various patterned states.

While quite interesting, the patterns in Taylor–Couette flows tend to have mainly
a one-dimensional cellular structure and so we turn next to laboratory experiments
of Rayleigh–Bénard convection that show two- and three-dimensional pattern for-
mation and dynamics. As you learn by answering Exercise 1.5, a room like that
described in Fig. 1.1 is impractical for convection experiments because the onset of
convection is reached for a tiny difficult-to-achieve temperature difference, and the

4 A bifurcation of a dynamical system that introduces an intrinsic temporal oscillation is called a Hopf bifurcation,
so the transition of Taylor cells to the wavy vortex state in Fig. 1.11(b) is a spatiotemporal example of a Hopf
bifurcation.

5 This diagram is not complete since some regimes are hysteretic. One can then observe different states for the
same values of Ri and Ro, depending on the history of the experiment.
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Fig. 1.12 Phase diagram of patterns observed in Taylor–Couette flow as a function
of the inner Reynolds number Ri and the outer Reynolds number Ro. The heavy
line denotes the boundary between featureless flow below the line and patterned
states above the line. (Redrawn from Andereck et al. [3].)

time scales for observation are uncomfortably long. Instead, experimentalists use
tiny convection cells that are Swiss watches of high precision, with a fluid depth
of perhaps d ≈ 1 mm and a width L ≈ 5 cm. The bottom and top plates of such
apparatuses are machined and polished to be flat to better than one micron and then
aligned to be parallel to better than one part in 104. The bottom plate may be made
of gold-plated copper which has a thermal conductivity about 1000 times higher
than water or air. The upper plate is often made of a thin, wide (and expensive!) sap-
phire plate, which has the nice properties of being optically transparent (allowing
visualization of the flow) and of being an excellent thermal conductor. The mean
temperature of the fluid and the temperature difference �T across the plates can be
controlled to better than 1 milliKelvin (again about one part in 104) for more than
a month of observation at a time. A Rayleigh–Bénard convection experiment has
a significant advantage over Taylor–Couette and other fluid experiments in hav-
ing no moving parts in contact with the fluid. Thus motors or pumps that oscillate
and vibrate can be avoided and the observed dynamics of the convecting fluid is
intrinsic since the fluid is bounded by time-independent spatially homogeneous
boundaries.

The patterns of a convecting flow are usually visualized by a method called
shadowgraphy (Fig. 1.13). The index of refraction of a fluid is weakly dependent
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Fig. 1.13 Schematic drawing of the shadowgraphy method for visualizing a
Rayleigh–Bénard convection pattern. Monochromatic light from a light emitting
diode (LED) is reflected by a beam splitter through the transparent top plate (often
made of sapphire) of the convection experiment. The light beams are refracted
by the warm and cold regions of the fluid which act as diverging and converg-
ing lenses respectively. The light is then reflected off the mirror bottom plate, is
refracted once more through the convection rolls, back through the beam split-
ter, and is then analyzed by a CCD (charge-coupled-device) videocamera. (From
deBruyn et al. [30].)

on temperature so that the warm rising plumes of fluid act as a diverging lens and the
cold descending plumes of fluid act as a converging lens. A parallel beam of light
passing through the convecting fluid will be refracted by the convection rolls, and
focused toward the regions of higher refractive index. The convection rolls act as an
array of lenses producing, at the imaging plane, a pattern of alternating bright and
dark regions, with the bright regions corresponding to the cold down-flow and the
dark regions corresponding to the warm up-flow. These images are often sufficient
to identify the interesting patterns and their dynamics, and can be recorded by a
video camera and stored in digital form for later analysis.

Given this background, you can now appreciate the experimental data of
Fig. 1.14, which shows three convection patterns in large cylindrical geome-
tries. As we will see, the typical size of the structures in the convecting flow
is set by the depth of the layer of fluid. The important parameter describing the
“size” of the experimental system is therefore the aspect ratio defined as the lat-
eral extent of the convecting fluid (e.g. the radius of a cylindrical cell) divided
by the fluid depth. We will use the symbol 
 for the aspect ratio. The convecting
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(a) (b) (c)

Fig. 1.14 Visualization of convecting fluid patterns in large cylindrical cells by the
shadowgraphy method of Fig. 1.13. The white regions correspond to descending
colder fluid and the dark stripes to rising warmer fluid. (a) A stationary stripe
pattern just above onset for R = 1.04Rc, with a local wavelength that is close to
twice the depth of the fluid. This cell has an aspect ratio of 
 = r/d = 41. (b)
A remarkably uniform stationary lattice of hexagonal convection cells is found in
gaseous CO2 for R = 1.06Rc. Here the fluid is descending in the middle of each
hexagonal cell and rising along its boundaries. Only a portion of an aspect-ratio

 = 86 cell is shown. With a small increase in the Rayleigh number to R = 1.15Rc,
the hexagonal cells in (b) change into a slowly-rotating spiral. A three-armed spiral
pattern is shown in (c). (Panels (a) and (b) from deBruyn et al. [30]; (c) from the
website of Eberhard Bodenschatz.)

fluid in the experiments shown in Fig. 1.14 is compressed carbon dioxide at room
temperature.

Figure 1.14(a) shows a most remarkable fact. After some transient dynamics not
shown, the rising and falling plumes of fluid self-organize into a time-independent
periodic lattice of straight lines, often called “stripes.” The surprise is that the
circular geometry of the surrounding walls has little effect on this final geometric
pattern; one might have expected instead the formation of axisymmetric (circular)
convection rolls with the same symmetry as that of the lateral walls.

Under slightly different conditions Fig. 1.14(b) shows that a nearly perfect time-
independent lattice of hexagonal convection cells forms. In each hexagon, warm
fluid rises through its center and descends at its six sides, and the diameter of each
hexagon is about the depth of the fluid. As was the case for the stripe pattern,
the cylindrical shape of the lateral walls seems to have little effect on the pattern
formation within the fluid except for the few cells directly adjacent to the lateral
wall.

In Fig. 1.11(b) and in Figs. 1.14(a) and (b), we seem to be observing an intrinsic
ordering of the convection cells which you might guess is analogous to the formation
of a crystalline lattice of atoms as some liquid is slowly cooled. However, as we
discuss in the next chapter and later in the book, the mechanism for formation
of stationary nonequilibrium periodic lattices is fundamentally different than the
mechanism by which periodic equilibrium crystalline lattices form, e.g. the cubic
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lattice of sodium and chlorine atoms in table salt. In the latter case, atoms attract
each other at long distances and repel each other at short distances so that the lattice
spacing is determined by the unique energy minimum for which the repulsive and
attractive forces balance. In contrast, the lattice spacing in a nonequilibrium system
is determined by dynamic mechanisms that have nothing to do with repulsion or
attraction and with which no energy-like quantity can generally be associated. A
consequence is that nonequilibrium lattices may lack a unique lattice spacing for
specified experimental conditions.

For the same fluid and geometry of Fig. 1.14(b), if the Rayleigh number is
increased just a tiny bit more to the value R = 1.15Rc, the hexagonal lattice dis-
appears and is replaced by a large slowly rotating spiral. A similar spiral pattern in
a smaller aspect ratio cell is shown in Fig. 1.14(c). If you look carefully, you will
see that the spiral terminates before reaching the lateral wall by merging with three
topological defects called dislocations. The three convection patterns of Fig. 1.14
raise obvious interesting questions about pattern formation in nonequilibrium sys-
tems. Why do we see stripes in one case and hexagons in another? What determines
the lattice spacing? Why do the hexagons disappear with a small increase in R, to be
replaced by a large rotating spiral? And what determines the angular frequency of
the spiral’s rotation? We will be able to answer some of these questions in Chapters 6
through 9 later in the book.

The patterns in Fig. 1.14 are time-independent or weakly time-dependent. In
contrast, Fig. 1.15 shows snapshots from two different time-dependent states that
have been observed in a convecting fluid close to the onset of convection. Figure
1.15(a) shows a most remarkable dynamical state called spiral defect chaos. Spirals
and striped regions evolve in an exceedingly complex way, with spirals migrating
through the system, rotating (with either sense) as they move, sometimes annihi-
lating with other spirals, and sometimes giving birth to spirals and other defects. It
seems almost inconceivable that rising and falling air can spontaneously develop
such a complicated dynamical dance, especially under conditions such that the
air is constrained by time-independent and spatially homogeneous boundaries.
Experiments and numerical simulations have further shown that, under identical
experimental conditions (although in a large rectangular convection cell), one can
see spiral defect chaos or a time-independent lattice of stripes similar to Fig. 1.14(a),
i.e. there are two dynamical attractors and which one is observed depends on the
initial conditions of the experiment. So the same fluid can convect in two very
different ways under the same external conditions. Another interesting feature of
spiral defect chaos is that it is found only in convection systems that are sufficiently
big. For geometries with aspect ratio 
 smaller than about 20, one finds other
less-disorganized patterns. This dependence on size is not understood theoretically.
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(a) (b)

Fig. 1.15 Two spatiotemporal chaotic examples of Rayleigh–Bénard convection.
(a)Asnapshot of spiral defect chaos in a large cylindrical cell of radius r = 44 mm,
and depth d = 0.6 mm (
 = 73), for Rayleigh number R = 1.894 Rc. The fluid is
gaseous carbon dioxide at a pressure of 33 bar. (From Morris et al. [75]) (b)Asnap-
shot of domain chaos, which occurs in a Rayleigh–Bénard convection cell that is
rotating with constant angular frequency about the vertical axis. The figure actu-
ally shows results from numerical simulations of equations to be introduced in
Chapter 5 but the experimental pictures are similar. Each domain of rolls is unsta-
ble to the growth of a new domain with rolls oriented at about 60◦ with respect to
the old angle, and the pattern remains dynamic. (From Cross et al. [27].)

If a convection apparatus is rotated at a constant angular frequency ω about its
center, a different chaotic dynamics is observed called domain chaos (Fig. 1.15(b)).
The rotation rate can be expressed in dimensionless form using a rotational Reynolds
number

� = ωd2

ν
, (1.5)

where we use an uppercase Greek omega, �, to distinguish this quantity from the
Reynolds numbers R defined in Eq. (1.4) for Couette flow. Provided that � exceeds
a critical value �c (which has the value �c � 12 for gaseous CO2), experiments
show that the domain chaos persists arbitrarily close to the onset of convection. As
the Rayleigh number for convection R approaches Rc from above, the size of the
domains and the time for one domain to change into another domain of a different
orientation both appear to diverge. The experimental discovery of domain chaos
was quite exciting for theorists since, in the regime arbitrarily close to onset, there is
a good chance of understanding the dynamics by developing a perturbation theory
in the small quantity ε = (R − Rc)/Rc � 1.

These two kinds of spatiotemporal chaos raise some of the most difficult concep-
tual questions concerning sustained nonequilibrium states. How do we understand
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such disordered states, as well as the transitions into and out of such states?Are such
states analogous to the liquid and gas phases of some equilibrium system and are
the transitions between spatiotemporal chaotic states possibly similar to thermody-
namic phase transitions? As one example to consider, as the Rayleigh number R is
increased with zero rotation rate, a pattern consisting mainly of stripes evolves into
the spiral defect chaos state. What then is the effect of rotation on this spiral defect
chaos, and how does this state change into domain chaos with increasing �?

We now turn away from convection to discuss patterns found in other controlled
laboratory experiments. Figure 1.16 shows three new kinds of nonequilibrium

Fig. 1.16 Three patterns observed in crispation experiments, in which a shallow
horizontal layer of fluid (here a silicon oil with viscosity ν = 1 cm2/s) is shaken up
and down with a specified acceleration a(t) Eq. (1.6). Bright areas correspond to
flat regions of the fluid surface (peaks or troughs) that reflect incoming normal light
back toward an imaging device. (a) A mixed pattern of stripe and chaotic regions.
The fluid is being driven sinusoidally with parameters a1 = 0 and a2 ≈ 8g (about
1.45ac) and f1 = 45 Hz in Eq. (1.6). (From Kudrolli and Gollub [58].) (b) A time-
periodic superlattice pattern consisting of two superimposed hexagonal lattices
with different lattice constants (ratio

√
3) and rotated with respect to one another

by 30◦. This figure was obtained by averaging over two drive periods for parameter
values m = 4, n = 5, a4 ≈ 4.4g, a5 ≈ 7.9g, f = 22 Hz, and φ = 60◦ in Eq. (1.6).
(c) For the same parameters as those of panel (b) but with a relative driving phase φ
set to 16◦, a spatially quasiperiodic pattern is observed that has 12-fold symmetry
around various points in the pattern. ((b) and (c) from Kudrolli et al. [59].)



30 Introduction

patterns that are observed in a so-called crispation or Faraday experiment, named
after the British scientist Michael Faraday who was the first to report some observa-
tions of such a system in the year 1831. In these particular crispation experiments, a
dish containing a fluid layer was shaken up and down with a specified acceleration
of the form

a(t) = an cos(2πnft) + am cos(2πmft + φ). (1.6)

Here the acceleration amplitudes an and am are measured in units of the Earth’s
acceleration g, the basic frequency f is varied over the range 10–200 Hz, m and n are
integers, and φ is a specified phase.6 For the case of sinusoidal driving with an = 0
and m = 1, when the acceleration amplitude am or shaking frequency f exceeds
some threshold, the fluid’s flat surface becomes unstable to the formation of cap-
illary waves (short-wavelength surface waves for which the surface tension of the
fluid is a stronger restoring force than gravity) and the nonlinear interaction of these
waves leads to intricate patterns, including lattices of stripes, squares, or hexagons,
and spatiotemporal chaos.7 An advantage of crispation experiments over convection
and Taylor–Couette experiments is that the effective system size of the system can
be easily increased by simply increasing the driving frequency f , which decreases
the average wavelength of the patterns.

In Fig. 1.16(a), a cup 32 cm in diameter containing a 3 mm layer of viscous
silicon oil was shaken sinusoidally (an = 0, m = 1) with frequency f = 45 Hz
and acceleration am ≈ 8g. For these parameters, the fluid surface spontaneously
evolves to a novel mixed state for which part of the fluid is evolving chaotically
and part is an approximately stationary stripe pattern. Unlike the stripe-turbulent
state of Fig. 1.11(e), the fronts separating the chaotic and laminar regimes do not
propagate. Increasing the amplitude a1 further causes the chaotic regions to grow in
size at the expense of the stripe region until the stripe region disappears completely.
These results are not understood theoretically.

The patterns in Figs. 1.16(b) and (c) are obtained for the case of periodic external
driving with two frequencies such that the ratio of the driving frequencies is a
rational number m/n. If one frequency fm = 4f is an even multiple and the second
frequency fn = 5f is an odd multiple of a base frequency f = 22 Hz, there is a
regime of parameters such that the fluid surface spontaneously forms a new kind
of structure called a superlattice that can be understood as the superposition of two
different lattices. Superlattices are found in other nonequilibrium systems as well

6 As a simple experiment, you can try placing a loud speaker face up to the ceiling, put a small board on the
speaker cone, and then put a cup of water on the board. Playing various tones at different volumes through
the speaker will then shake the cup up and down with a prescribed amplitude and frequency and you should be
able to see some interesting patterns.

7 Crispation patterns are all time dependent and vary subharmonically with the driving frequency f . A stationary
pattern is then one that looks the same after two driving periods.
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as in equilibrium structures. If the relative phase of the driving is decreased from
φ = 60◦ to 16◦, an intricate time-independent pattern is now observed (Fig. 1.16(c))
that is called quasicrystalline since it is spatially nonperiodic yet highly ordered in
that its wave number spectrum P(k) has sharp discrete peaks.

Quasicrystalline states are rather extraordinary. Since the development of X-ray
crystallography and associated theory in the early twentieth century, scientists had
believed that sharp peaks in a power spectrum (corresponding to discrete points in
a X-ray film) could arise only from a periodic arrangement of the objects scatter-
ing the X-rays. This orthodoxy was proved wrong in 1984 when experimentalists
announced the synthesis of the first quasicrystal, an Al-Mn alloy whose X-ray
diffraction pattern had the seemingly impossible properties of a 5-fold symmetry
(not possible for a space-filling periodic lattice) and sharp peaks (indicating the
absence of disorder). Figure 1.16(c) is a nonequilibrium example of a quasicrys-
talline pattern with a 12-fold symmetry, and experiments show that the pattern is
intrinsic since it is not sensitive to the shape or size of the container. Why is panel (c)
quasicrystalline rather than striped or hexagonal as we saw for Rayleigh–Bénard
convection in Figs. 1.14(a) and (b)? As various parameters are varied, what kinds
of transitions into and out of this state exist?

Pattern formation in a rather different kind of crispation experiment is shown in
Fig. 1.17, which involves the vertical shaking of a granular medium consisting of
thousands of tiny brass balls.8 This pattern formation is not related to the capillary
waves of a Faraday experiment since a granular medium does not possess a surface
tension (the brass balls do not attract each other as do the molecules in a fluid). When
the dimensionless amplitude of shaking is sufficiently large, the granular layer is
actually thrown into the air, somewhat like a pancake from a frying pan, and then
the layer starts to spread out vertically since the brass balls are not all moving with
identical velocities. It is then possible for the bottom of the container to be moving
upwards at the same time as the bottom of the granular layer is descending, causing
some balls to strike the bottom (changing their direction) while other balls remain
suspended in the air and continue to fall. This can lead to an alternating pattern in
which peaks and valleys of balls formed at one cycle become respectively valleys
and peaks at the next cycle or every four cycles, and so on.

In Figs. 1.17(a)–(e), we see stripe and hexagonal regions somewhat similar to
those observed in convection near onset (Fig. 1.14) but the regions appear in new and
unusual combinations, e.g. two kinds of hexagonal regions separated by a front (b),
two flat regions (c), a region of locally square cells abutting a stripe region (d), a
pattern consisting of three kinds of hexagonal regions (e), and spatiotemporal chaos

8 This experiment was originally carried out not to study crispation dynamics but to explore the properties of
granular media, a major research area of current nonequilibrium science.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1.17 Six patterns observed in a granular crispation experiment. A shallow
layer (depth = 1.2 mm) of tiny brass balls (diameters ranging from 0.15–0.18 mm)
was vertically shaken up and down in an evacuated cylinder of diameter 127 mm
at a constant angular frequency ω = 421 s−1 with a varying vertical amplitude A.
Each pattern is characterized by the dimensionless acceleration parameter 
 =
ω2A/g where g is the gravitational acceleration. (a) 
 = 3.3, a disordered stripe
state that is found just above the onset of the instability of a flat uniform state; (b)

 = 4.0, a state consisting of two different kinds of locally hexagonal structures;
(c) 
 = 5.8, two flat regions divided by a kink; (d) 
 = 6.0, a phase of locally
square-symmetry states coexisting with a phase of stripes; (e) 
 = 7.4, different
kinds of coexisting hexagonal phases; (f) 
 = 8.5, a spatiotemporal chaotic state.
(From Melo et al. [73].)

consisting of short stripe-like domains (f). Unlike convection, Taylor–Couette flow,
or crispation experiments with a fluid, it is not clear what sets the length scales of
these cellular patterns. The similarities of these patterns to those observed in fluids
and in other systems such as lasers is intriguing and puzzling. Is there an underlying
continuum description of these brass balls, similar to the Navier–Stokes equations
of fluid dynamics? If so, what is that description and how is it derived? What are
the properties of the granular media that determine these different spatiotemporal
phases?

For our last example of controlled nonequilibrium patterns and dynamics, we dis-
cuss experiments involving chemical solutions. Figure 1.18(a) shows a snapshot
of a time-dependent two-dimensional chemical reaction known as the Belousov–
Zhabotinsky reaction, named after two Russians who, in the 1950s and 1960s,
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Fig. 1.18 Representative patterns in reaction–diffusion systems. (a) Time-
dependent many-spiral state observed in a Belousov–Zhabotinsky excitable
reaction consisting of chemical reagents in a shallow layer of fluid in a Petri-
like dish. Since the system is closed, the pattern becomes time-independent after
a long-lived complicated transient state. (From Winfree and Strogatz [112].) (b)
Nearly time-independent hexagonal pattern of spots observed in a chlorite-iodide-
malonic-acid (CIMA) system of chemicals that are reacting in a thin cylindrical
polyacrylamide gel of diameter 25.4 mm and thickness 2.00 mm. Unlike (a), this is
a sustained nonequilibrium system since reagents are fed to and reaction products
removed from the gel. The gel suppresses fluid motion and provides a way to visu-
alize the iodide concentration field since the iodide binds with starch embedded
in the gel to produce a blue color. The spacing between dots is about 0.2 mm,
substantially smaller than the thickness of the gel. (c) For slightly different exter-
nal conditions, a nearly time-independent stripe pattern is observed instead of
comparable wavelength. (From Ouyang and Swinney [84].)

established the remarkable fact that chemical systems could approach equilibrium
with a non-monotonic dynamics, e.g. by oscillating in time or by propagating waves
in space. When first announced, the experimental discovery was greeted with dis-
belief and ridicule since most scientists at that time believed incorrectly that the
second law of thermodynamics (that the entropy of a system can only increase
monotonically toward a maximum value corresponding to thermodynamic equi-
librium) implied a monotonic evolution of chemical concentrations toward their
asymptotic equilibrium values. With the hindsight of several decades of nonlin-
ear dynamics research that has established convincingly the existence of periodic,
quasiperiodic, and chaotic attractors in many experimental systems as well as the
occurrence of complicated transients leading to these attractors, it is difficult for
contemporary scientists to appreciate this initial disbelief.

Current interest in the Belousov–Zhabotinsky reaction lies primarily in its value
as an experimental metaphor for studying more complicated continuous media such
as lasers and heart tissue that have the property of being excitable. An excitable
medium is such that a local weak perturbation decays while a perturbation whose
strength exceeds some threshold grows rapidly in magnitude and then decays. An
example is a field of dry grass for which a local increase in temperature causes
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no change until the temperature exceeds the kindling point. The temperature then
rapidly increases as the grass combusts, a wall of flame propagates through the
grass, and then the temperature decays to the ambient temperature once the grass
has been consumed. Excitable media such as the Belousov–Zhabotinsky reaction,
heart tissue, and dry grass fields show similar spatiotemporal patterns and so inves-
tigations of the disordered rotating and propagating spiral waves in Fig. 1.18(a), of
target patterns of concentric circular propagating waves (not shown and believed
to be induced by impurities such as a piece of dust), and their generalization to
three-dimensional chemical media in the form of scroll waves give insight simulta-
neously to many different systems. The questions of interest are ones that we have
discussed earlier in the context of a galaxy’s spiral arms and of the aggregation
of slime mold. What determines the speed of a front and its frequency of rotation
and how do these quantities vary with parameters? For many-spiral states, what
happens when one spiral interacts with another spiral or with a boundary? In a
three-dimensional medium, what are the possible wave forms and how do their
properties vary with parameters?

The reaction–diffusion patterns of Figs. 1.18(b) and (c) involve different chemi-
cals and are qualitatively different in that the medium is not excitable and there are
no propagating waves. Also, these figures represent true sustained nonequilibrium
states since porous reservoirs in physical contact with opposing circular surfaces
of a thin cylindrical gel (see Fig. 3.3 on page 110) feed chemical reagents into the
interior of the gel where the pattern formation occurs, and also withdraw reaction
products. The small pores of the gel suppress fluid motion which greatly simplifies
the theoretical analysis since the spatiotemporal dynamics then arises only from
the reaction and diffusion of chemicals within the gel. The patterns were visual-
ized by using the fact that one of the reacting chemicals (iodide) binds to starch
that is immobilized in the gel, causing a color change that reflects the local iodide
concentration.

A typical experiment involves holding the temperature and reservoir chemical
concentrations constant except for one chemical concentration which becomes the
control parameter. For one choice of this concentration (Fig. 1.18(b)), the chem-
icals spontaneously form a locally hexagonal pattern similar to the convection
pattern Fig. 1.14(b) and granular crispation patterns in Fig. 1.17. Other param-
eter values lead to a stripe state, superlattices, and spatiotemporal chaos. These
chemical patterns are cellular just like the convection patterns that we discussed in
Figs. 1.14 and 1.15 but here the length scale is determined dynamically by a balance
of diffusion and chemical reaction rates rather than by the geometry of the container.

When the experiments in Figs. 1.18(b) and (c) and others were first reported
around 1990, there was great scientific excitement, not because they were the first
examples of nonequilibrium pattern formation but because they were the first to
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confirm a remarkable insight of Alan Turing. In 1952, Turing observed that dif-
fusion, which by itself tends to make chemical concentrations spatially uniform,
could lead to the formation of cellular patterns if chemical reactions were also to
occur. (We will discuss some details of Turing’s insight in Chapter 3, when we
discuss the linear stability of a uniform state.) Turing then went on to speculate
that patterns generated by reaction and diffusion might suffice to explain biolog-
ical morphogenesis, the formation of structure during the growth of a biological
organism. Examples Turing had in mind included the formation of stripes or spots
on animal surfaces (tigers, zebras, cheetahs, giraffes, fish, seashells), the formation
of symmetrically arranged buds that grow into leaves or tentacles, and the ques-
tion of how a presumably spherically symmetric fertilized egg (zygote) could start
the process of dividing and differentiating into the many different kinds of cells
found in an adult organism. Ironically, while Turing’s insight of pattern formation
by reaction and diffusion was finally confirmed forty years later by nonbiological
experiments, pattern formation in biological systems has turned out to be more
complicated than originally conceived by Turing, and a picture as simple as the one
he proposed has not yet emerged.

1.3.3 What are the interesting questions?

To summarize the many nonequilibrium states discussed in Sections 1.3.1 and 1.3.2,
let us list here the scientific questions raised by our discussion:

Basic length and time scales: Many of the patterns that we discussed have a cellular
structure, consisting locally of stripes, squares, or hexagons of a certain typical size,
or of waves or spirals that evolve with a certain frequency and velocity. An obvious
question is what determines the basic length and time scales of such patterns? In some
cases such as Taylor–Couette flow and Rayleigh–Bénard convection, the cellular size
is determined by the experimental geometry (e.g. the thickness of the fluid layer) but
this is not always the case. For example in the limit that the thermal conductivity of
a convecting fluid becomes large compared to that of the floor and ceiling in Fig. 1.1
(liquid mercury between two glass plates would be an example), the cellular length
scale can become much larger than the depth of the fluid. For reaction–diffusion
chemical systems and related media such as the heart or a slime mold, the length and
time scales are determined dynamically by diffusion constants and reaction rates.

Wave number selection: For some parameter ranges, stationary spatially periodic lat-
tices are observed that can be characterized by a single number, the lattice spacing.
In these cases, we can ask the question of wave number selection: is a unique lat-
tice spacing observed for specified parameters and boundary conditions and what
determines its value? If there are multiple spacings, what determines their values?

Related questions arise in other systems. Thus the spirals in spiral galaxies
(Fig. 1.4), in slime-mold aggregation (Fig. 1.9), in spiral defect chaos (Fig. 1.15),
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and on the surface of a fibrillating heart (Fig. 1.10) all raise the question of what
determines the frequency of rotation and the velocity of the arms in the observed spi-
rals. In snowflakes (Fig. 1.8) and in the domain chaos of a convecting fluid (Fig. 1.15),
there is propagation of a tip or front and one can ask if the propagation occurs with a
unique velocity and what determines that velocity.

You should appreciate that the question of length and time scales and the question
of wave number selection are distinct. The question of scales corresponds to knowing
what unit of measurement is appropriate (say meters versus millimeters or days versus
seconds). The question of wave number selection then corresponds to making precise
measurements on this scale. For example, the lattice spacing of hexagonal rolls may be
about one millimeter in order of magnitude (the length scale) but in actual experiments
we would be interested to know if the precise value is 0.94 or 1.02 mm and whether
these values repeat from experiment to experiment.

Pattern selection: For patterns that form in two- and three-dimensional domains, mul-
tiple patterns are often observed for the same fixed external conditions. The question
of pattern selection is why one or often only a few patterns may be observed or why,
in other cases, certain patterns are not observed? An example we discussed above was
the occurrence of a spiral defect chaos state (Fig. 1.15(a)) or of a stripe-pattern state
under identical conditions in a large square domain. On the other hand, a quasiperiodic
pattern like Fig. 1.16(b) has never been observed in a convecting flow. Why not?

Transitions between states: A given nonequilibrium state will often change into some
other state as parameters are varied and so we can ask: what are the possible transitions
between nonequilibrium states? Of special interest are supercritical transitions – in
which a new state grows continuously from a previous state – since analytical progress
is often possible near the onset of such a transition.

Arelated question is whether supercritical nonequilibrium transitions have interest-
ing critical exponents associated with the transition. For second-order thermodynamic
phase transitions and for nonequilibrium supercritical transitions, a quantity Q that
characterizes the system may converge to zero or diverge to infinity at the transition
point as a power law of the form

Q ∝ |p − pc|α , as p → pc, (1.7)

where p is the parameter that is being varied with all others held fixed, pc is the critical
value of p at which the supercritical transition occurs, and the quantity α is the critical
exponent which determines the rate of convergence or divergence of Q.9 Some of the
great advances in twentieth-century theoretical and experimental science concerned
the discovery and explanation for “universal” values of these critical exponents. In
equilibrium systems, their values turn out to depend remarkably only on the symmetry

9 An example of a second-order equilibrium phase transition is the loss of magnetism of pure iron as its tem-
perature T is increased to its Curie temperature Tc ≈ 1043 K. The magnetization M of the iron decreases to
zero according to Eq. (1.7) with an exponent α ≈ 0.3. The onset of convection in Fig. 1.1 is a supercritical
nonequilibrium transition for which the maximum magnitude of the velocity field maxx‖v‖ vanishes according
to Eq. (1.7) with an exponent α ≈ 1/2.
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and dimensionality of the system undergoing the phase transition, but not on the
possibly complicated details of its atomic structure. So we can ask: do universal
exponents occur in spatially extended nonequilibrium systems? If so, on what details
of the system do they depend?

Stability: In addition to classifying the possible transitions between different nonequi-
librium states, can we predict when transitions will occur for particular states as
particular parameters are varied? For many experiments, the underlying dynamical
equations are known and a linear stability analysis of a known state can be attempted
numerically (more rarely, analytically). In other cases such as granular flow or neural
tissue, the underlying equations are not known (or might not exist or might not be
practical to work with mathematically or computationally) and one might instead try
to identify empirical features in experimental data that could suggest when a transi-
tion is about to occur. Two examples are attempts to predict an economic crash from
stock market time series, and efforts to predict the onset of an epileptic seizure from
19-electrode multivariate EEG time series.

Boundaries: Even in experimental systems that are large compared to some basic cel-
lular length scale, the lateral boundaries confining the medium (e.g. the walls in
Fig. 1.1) can strongly influence the observed patterns and dynamics. How do the
shape, size, and properties associated with lateral boundaries influence the dynam-
ics? One example we discussed in Section 1.3.2 was the fact that spiral defect chaos
(Fig. 1.15(a)) is not observed until a convection system is sufficiently wide. Some-
how the lateral boundaries suppress this state unless the boundaries are sufficiently
far from each other.

Transients: For spatially extended nonequilibrium systems, it can be difficult to deter-
mine how long one must wait for a transient to end or even if an observed state is
transient or not. Mathematical models of spatially extended systems suggest that the
average time for transients to decay toward a fixed point can sometimes grow expo-
nentially rapidly with the system size and so be unobservably long even for systems
of moderate size. What determines the time scale for a transient spatiotemporal pat-
tern to decay? Is it possible to distinguish long-lived transient states from statistically
stationary states?

Spatiotemporal chaos: Many systems become chaotic when driven sufficiently away
from equilibrium, i.e. their nontransient dynamics are bounded, are neither station-
ary, periodic, nor quasiperiodic in time, and small perturbations grow exponentially
rapidly on average. Chaotic pattern forming systems in addition may develop a nonpe-
riodic spatial structure that is called spatiotemporal chaos. Several examples discussed
above include spiral defect chaos and domain chaos in Fig. 1.15 and a chaotic pattern
in a granular crispation experiment, Fig. 1.17(f). Spatiotemporal chaos raises difficult
conceptual questions about how to characterize the spatiotemporal disorder and how
its properties depend on parameters.

Transport: For engineers and applied scientists, an important question is how does
the transport of energy and matter through a spatiotemporal nonequilibrium system
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depend on its parameters? For example, computer chips generate heat and a mechani-
cal engineer may need to design the geometry of a computer board so that convection
can remove the heat efficiently. Similarly, the synthesis of an ultrapure crystal from a
molten substrate is a nonequilibrium problem for which a chemical engineer needs to
know how the transport of impurities into the crystal depends on parameters so that
this transport can be minimized.

Control: For many applied science problems, it is not sufficient to observe a nonequilib-
rium system passively, one needs to control a system actively by applying an external
perturbation. An example is the dynamics of left ventricular muscle (Fig. 1.10), for
which one might hope to use gentle electrical perturbations to prevent the onset of
fibrillation when an arrhythmia appears. Similarly, an electrical engineer may need to
apply an external perturbation to a laser to stabilize a regime of high-power coherent
emission, or a plasma physicist may want to confine a hot thermonuclear plasma for
long times by modulating some external magnetic field, and one can speculate about
a futuristic technology that perturbs the atmosphere to prevent the formation of a
tornado or hurricane. These goals raise many unsolved questions regarding how a
nonequilibrium system responds to external perturbations and how to choose such
perturbations to achieve a particular goal.

1.4 New features of pattern-forming systems

The variety of nonequilibrium patterns discussed in the previous sections and the
many scientific questions suggested by these patterns are possibly overwhelming
if you are learning about these for the first time. To give you some sense about
what features of these systems are significant, we discuss in this section some
ways that pattern-forming nonequilibrium systems differ from those that you may
have encountered in introductory courses on nonlinear dynamics and on thermody-
namics. We first discuss some conceptual differences and then some specific new
properties.

1.4.1 Conceptual differences

An important new feature of pattern-forming systems and a direct consequence
of their nonequilibrium nature is that the patterns must be understood within a
dynamical framework. This is the case even if we are interested in just time-
independent patterns such as panels (a) and (b) of Fig. 1.14. In strong contrast,
the geometry and spacing of a spatial structure in thermodynamic equilibrium can
be understood as the minimum of the system’s energy (or, more precisely, as the
minimum of the system’s free energy for systems at a finite temperature T ).Afamil-
iar equilibrium example is a periodic lattice of atoms or molecules in a crystal. The
positions of the atoms can be determined directly from the energy of their mutual
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interaction, independently of the dynamics of the atoms, since the minimum energy
is achieved for zero velocity of each atom and so depends only on the positions of
the atoms.10 This is not the case for nonequilibrium systems since generally there
is no free-energy-like quantity whose extremum corresponds to the static nonequi-
librium pattern. (We will discuss this point in more detail later in the book but note
for now that the absence of a free energy is partly a consequence of the fact that
nonequilibrium systems are open systems subjected to imposed external fluxes and
so a system’s energy, mass, and momentum are often not conserved.) Furthermore,
we are often interested in the breakdown of stationary patterns to new patterns that
remain dynamic indefinitely, a phenomenon that obviously requires a dynamical
formulation and that has no thermodynamic analogy.

Introductory nonlinear dynamics courses discuss systems that are well described
with just a few variables, e.g. the logistic map, the Hénon map, the standard map, the
driven Duffing equation, and the Lorenz model. A pattern-forming system differs
fundamentally in that many variables are needed to describe the dynamics (the
phase space is high-dimensional). New concepts and methods are then needed to
study pattern formation, and indeed many basic ideas that you may have learned
in an introductory nonlinear dynamics course will not be applicable in this book.
For example, the strategy of studying a continuous-time dynamical system via its
associated discrete-time Poincaré map is no longer useful, nor is it productive to
analyze an experimental time series by embedding it into some low-dimensional
phase space. As mentioned above, a high-dimensional phase space is needed even
to describe a fixed point (an attractor with zero fractal dimension) such as the static
pattern of convection rolls in Fig. 1.14(a) since the transient orbit meanders through
the high-dimensional space as it approaches the fixed point.

Figure 1.19 gives a physical insight into why pattern-forming systems have a
high-dimensional phase space by contrasting two convection systems. The ther-
mosyphon shown in Fig. 1.19(a) is a thin closed circular pipe filled with a fluid
that is heated over its bottom half and cooled over its top half. From our discussion
of convection in Section 1.2, you will not be surprised to learn that if the circular
pipe is placed vertically in a gravitational field, then for a temperature difference
between the top and bottom halves that exceeds some critical value, the fluid begins
to circulate around the tube, forming a simple convection “roll.” (Which way does
the fluid begin to circulate? This is not determined a priori, and the circulation
will be clockwise for some experimental runs, anticlockwise for others – a good
example of what is known as a broken symmetry.) If the temperature difference in

10 We are thinking about the atoms classically here, a good approximation except for the lightest atoms such
as hydrogen and helium. In a full quantum mechanical description the atoms are no longer at rest in the
crystal even at zero temperature due to zero point motion. However, the lattice structure is still obtained as the
minimum energy state, albeit involving a more complicated calculation of the energy.
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(a) (b)

Fig. 1.19 Two convection systems: (a) a thermosyphon and (b) Rayleigh–Bénard
convection with many rolls. The light and dark regions denote respectively warm
and cool fluid regions. The thermosyphon is well-described by attractors in a three-
dimensional phase space whereas the patterns in Rayleigh–Bénard convection
require a high-dimensional dynamical description even to describe its static states.

this simple system is set to some still larger value, the direction of flow shows spon-
taneous chaotic reversals at what appear to be random time intervals. And indeed
experimentalists have shown that these reversal events are described well by the
three-variable Lorenz equations, one of the most famous systems in the study of
low-dimensional chaos.11 We can easily understand why a three-variable descrip-
tion might be adequate for Fig. 1.19(a). Although there are other dynamical degrees
of freedom of the fluid such as variations of the flow transverse to the axis of the
pipe, these turn out to be rapidly damped to constant values by the fluid viscosity
since the walls are close together and the fluid velocity is zero at the wall. Thus
these transverse degrees of freedom do not enter into the thermosyphon dynamics.

This thermosyphon should be contrasted with the pattern-forming convection
system in Fig. 1.19(b). Roughly, we might consider each convection roll to be
analogous to a separate thermosyphon loop so that the dimension of the phase
space needed to describe the convection system will be proportional to the number
of convection rolls (or alternatively proportional to the length of the convection
experiment). In fact, if we drive this system at a strength corresponding to the onset
of chaos in the thermosyphon, we would find that we not only have to include for
each roll three Lorenz-type variables of circulation velocity, temperature perturba-
tion and heat flow, but also new variables associated with distortions of each roll
caused by the coupling of each roll to other rolls. A pattern like Fig. 1.14(a) with
about 40 rolls may then well involve a phase space of dimension at least 150, huge
compared to any dynamical system described in introductory nonlinear dynamics
courses. We will indeed have to develop new concepts and methods to work with
such high-dimensional phase spaces.

11 The Lorenz variables X , Y , and Z are now interpreted as the fluid circulation velocity, the asymmetry of
temperature between the right and left halves of the loop, and the heat transported.
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By the way, Fig. 1.19 illuminates another (although somewhat technical) point,
that the essential difference between the two convection systems is not that the
thermosyphon is described by a few coupled ordinary differential equations while
the convection system is described by a few coupled partial differential equations
(abbreviated throughout this book as pdes). This might appear to be the case since
dynamical systems described by partial differential equations in principle have
infinite-dimensional phase spaces with the dynamical variables specified at a con-
tinuum of points labeled by their position in space. In fact, both systems in Fig. 1.19
are described by the partial differential equations of fluid dynamics and heat trans-
port. However for the thermosyphon, the dynamics of interest can be understood
within a truncated approximation of a few important dynamical degrees of freedom
(because of the strong damping by nearby lateral walls), whereas the interesting
dynamics in the pattern-forming system, such as the approach to a stationary state
or the transition of a stationary state to persistent dynamics, cannot. In Chapter 6,
we will see that even reduced descriptions of pattern-forming systems are often
described by partial differential equations (amplitude equations) and so remain
infinite dimensional.

We have argued that an important difference between the dynamical systems stud-
ied in an introductory nonlinear dynamics course and the pattern-forming systems
discussed in this book is that a description of the latter requires a high-dimensional
phase space. This is all well and good but you may ask, is there some easy way to
determine the phase-space dimension of an experiment or of a simulation? For-
tunately, there are two informal ways to estimate whether some system has a
high-dimensional phase space. One is simply visual inspection. If a nonequilib-
rium system is large compared to some basic characteristic length (e.g. the width of
a convection roll), then a high-dimensional phase space is likely needed to describe
the dynamics. We will call such systems spatially extended. A second way to iden-
tify a high-dimensional phase space is to simulate the system on a computer. If many
numerical degrees of freedom are needed (e.g. many spatial grid points or many
modes in a Fourier expansion) to reproduce known attractors and their bifurcations
to some reasonable accuracy, then again the phase space is high-dimensional.

Using visual inspection to estimate whether the phase space of some system is
high-dimensional assumes that we somehow know some characteristic length scale
with which we can compare the size of an experimental system. Identifying such a
length can be subtle but is often clear from the context of the system being studied.
As we have seen in Section 1.3, many pattern-forming systems involve cellular
structures (e.g. stripes and hexagons) or propagating waves in the form of spirals or
scroll waves which all have a well-defined wavelength. In these cases, a system is
spatially extended with a high-dimensional phase space if its geometric size is large
compared to the size of this wavelength. For more strongly driven nonequilibrium
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systems, there can be structure over a range of length scales12 and often no single
length can be identified as being special (for example, in Fig. 1.11(d), there is
structure on length scales substantially smaller than the width of a Taylor cell). But
then the fact that there is structure over a range of lengths itself indicates the need
for a high-dimensional phase space. For strongly driven systems we might need
to introduce other length scales called correlation lengths that quantify over what
distance one part of the system remains correlated with another part. A system is
spatially extended and high dimensional if it is geometrically large compared to
any one of these correlation lengths.

The high-dimensional phase space of pattern-forming systems has the unfortu-
nate implication that data analysis is challenging, both technically and conceptually.
Current desktop spatiotemporal experiments and simulations may require stor-
ing and analyzing hundreds of gigabytes of data as compared to a few tens of
megabytes for low-dimensional dynamical systems. Several satellite-based obser-
vational projects investigating the dynamics of Earth’s ecology, geology, and
meteorology are approaching hundreds of terabytes in storage. By comparison,
the total printed contents of the Library of Congress constitute about 10 terabytes
and several independent estimates suggest that the amount of information stored
in the human brain over a lifetime is perhaps 1–10 gigabytes of compressed data.
There is then a great need for theoretical insight that can suggest ways to reduce
such vast quantities of data to manageable amounts and to identify questions that
can be answered. We will touch on some of these data analysis issues several times
throughout the book but you should be aware that these are difficult and unsolved
questions.

Closely related to the challenge of analyzing large amounts of spatiotemporal
data is the challenge of simulating spatially extended dynamical systems. In an
introductory nonlinear dynamics course, no sophistication is needed to iterate a
map with a few variables or to integrate the three-variable Lorenz equations for a
long period of time, one simply invokes a few appropriate lines in a computer math-
ematics program like Maple or Mathematica. But to integrate numerically in a large
box the partial differential equations that describe Rayleigh–Bénard convection (the
Boussinesq equations) for the long times indicated by experiments is much more
challenging. One can rarely look up and just use an appropriate algorithm because
there are numerous subtleties concerning how to discretize three-dimensional time-
dependent nonlinear partial differential equations and how to solve the related linear
algebra problems efficiently (which may require solving hundreds of millions of

12 A “range of length scales” can be made more quantitative and objective by Fourier analyzing some observ-
able u(x, t) associated with the system and then by calculating the time-averaged wave-number spectrum P(k).
The range of length scales then corresponds to the range of wave numbers [k1, k2] such that P(k) differs
significantly from zero.
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simultaneous linear equations at each successive time step). Writing, validating,
and optimizing an appropriate code can take several years, even for someone with
a Ph.D. with special training in computational science. Further, even if a validated
code were instantly available, powerful parallel computers are needed to simulate
such equations in large domains over long time scales and such computers are still
not widely available or easy to use.

1.4.2 New properties

In addition to a high-dimensional phase space, spatially extended sustained
nonequilibrium systems have some genuinely new features when compared to
dynamical systems that evolve only in time. One such feature concerns how a
fixed point becomes unstable. For a system that evolves only in time (e.g. a driven
nonlinear pendulum), an infinitesimal perturbation of an unstable fixed point sim-
ply grows exponentially in magnitude (or perhaps exponentially with oscillations if
the imaginary part of the growth rate is nonzero). But for pattern-forming systems,
an infinitesimal perturbation of an unstable fixed point can grow spatially as well
as temporally. Further, there are two distinct kinds of spatial growth. One kind is
an absolute instability in which a perturbation that is localized over some region of
space grows at a fixed position. The second kind is a convective instability in which
the instability propagates as it grows. For this second kind of instability, there is
exponential growth only in a moving frame of reference. At any observation point
fixed in space, there is growth and then asymptotic decay of the instability as the
propagating disturbance moves beyond the observation point.

The linear instability of the uniform motionless state of air to convection rolls
in the convection experiment Fig. 1.1 is an example of an absolute instability. The
instability of snowflake dendritic tips in Fig. 1.8 is an example of a propagating
convective instability. This convective instability explains why no two snowflakes
are ever alike since it has the remarkable property of magnifying noise arising from
the molecular collisions near the tip of the growing dendrite. Perturbations from
this noise later influence the formation of the dendrite’s side branches.

Another new property is that a large pattern-forming system can consist of dif-
ferent spatial regions that each, by itself, could be a pattern for the entire system.
Further, such a quilt of different states can persist for long times, possibly indefi-
nitely.An example is Fig. 1.16(a), where a region of nearly time-independent stripes
coexists with chaotic disordered regions. Similarly, Fig. 1.17 shows several quilt-
like patterns, e.g. a square lattice adjoining a hexagonal lattice, each one of which
could fill the entire domain on its own. The localized region of a system separating
one pattern from another is called a front. Theoretical progress can often be made
by analyzing fronts as separate and simpler dynamical systems.
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1.5 A strategy for studying pattern-forming nonequilibrium systems

As you now appreciate from the above examples and discussion, the scope of
nonequilibrium physics is actually enormous since any system that is not in ther-
modynamic equilibrium is by definition a nonequilibrium system. Necessarily, the
phenomena we discuss in a book must be limited and in this section we describe the
kinds of nonequilibrium systems that we do and do not consider and also a strategy
for investigating the systems of interest.

We will be concerned primarily with nonequilibrium systems that are main-
tained in a state away from thermodynamic equilibrium by the steady injection and
transport of energy. Most interesting to us are systems displaying regular or nearly
regular spatial structures, some examples of which we discussed in Section 1.3. We
will discuss stationary spatial structures, their breakdown to persistent dynamical
states that are also disordered in space, and also systems supporting propagating
spatial structures. A major focus of this book is also on systems that may be inves-
tigated by precise, well-controlled laboratory experiment and for which there is
a well-understood theoretical formulation. The idea is to learn about the complex
phenomena of nonequilibrium systems through the study of these systems (“pre-
pared patterns”), exploiting the close connection between theory and experiment.
The ultimate goal is then to apply this knowledge to a wider range of problems
(“natural patterns”), perhaps where experimental intervention such as changing
parameters is not possible (e.g. the climate and many biological systems).

Figure 1.20 provides a way to understand how the systems described in this
book fit into the broader scheme of sustained nonequilibrium systems. A par-
ticular nonequilibrium system can be thought of as occupying a point in a
three-dimensional parameter space with axes labeled by three dimensionless
parameters R, 
, and N that we discuss in turn.

The parameter R is some dimensionless parameter like the Rayleigh number,
Eq. (1.1), that measures the strength of driving compared to dissipation. For many
systems, driving a system further from equilibrium by increasing R to larger values
leads to chaos and then to ever-more complicated spatiotemporal states for which
there is ever finer spatial structure and ever faster temporal dynamics. A canonical
example of a large-R system is highly turbulent fluid flow, e.g. the flow generated
behind a propeller rotating at high speeds. When discussing Fig. 1.6, we saw that the
Sun’s turbulent outer layer corresponds to a Rayleigh number of order 1012 so there
are some systems for which the R-axis can span at least 12 orders of magnitude.

Some nonequilibrium systems disintegrate or change their properties when
driven too strongly and so cannot be driven to arbitrarily large values along the R
axis. Examples might be a laser that burns through confining mirrors if pumped
too strongly, a biological system that becomes poisoned and dies if given too much
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R

N

Γ

Fig. 1.20 Aparameter space for categorizing sustained spatially extended nonequi-
librium systems. The R-axis is the “driving” or fluid-dynamics axis that measures
how far a system has been driven from equilibrium. The 
 axis is the “size” or
pattern-forming axis, indicating the size of a system relative to some basic length
scale such as the depth of a fluid. The N axis is the number of distinct components
that interact and can be thought of as the “biological” axis since living systems
have large numbers of different interacting components. Most of what is currently
known about nonequilibrium systems involves regions for which at least two of
the three variables R, 
, and N are small. Most of this book will concern the regime
of small N , small R, and large 
 as indicated by the thin vertical arrow.

of some nutrient like salt, or the medium in a crispation experiment that might be
thrown clear from its container if shaken up and down too strongly. Also some sys-
tems have stress parameters that simply cannot be raised above some finite value.
An example would be the concentration of some reagent that drives a solution of
reacting chemicals out of equilibrium. The concentration cannot be increased indef-
initely since, at some point, the solution becomes saturated and the reagent starts
to precipitate. Since fluids are the most widely studied systems that can be driven
strongly out of equilibrium, we can think of the R-axis in Fig. 1.20 as also being a
“fluid dynamics” axis.

The vertical axis labeled by 
 (upper-case Greek gamma) is the “aspect ratio”
axis, and indicates how large a system is compared to some characteristic length
scale such as the size of some cellular structure or the depth of the medium. We can
also consider this axis to be the “pattern-forming” axis since for larger 
 (bigger sys-
tems), the influence of lateral confining boundaries is reduced and the phenomenon
of pattern formation becomes more clear. Nonequilibrium desktop experiments
using liquid crystals as a medium have attained values of 
 as large as 1000 while
numerical simulations in one-space dimension have reached 
 ≈ 10 000. These
might seem like impressively large values but you should keep in mind that crystals
can be considered to have a much bigger aspect ratio of order 1 cm/10−7 cm ≈ 107

(ratio of macroscopic crystal size to its lattice spacing), so nonequilibrium exper-
iments are not yet “macroscopic” compared to their characteristic length scale.
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Earth’s ocean and troposphere (layer of the atmosphere closest to Earth where the
weather evolves) both have a depth of about 10 km and a lateral expanse of order the
radius of the Earth (6400 km) and so are big nonequilibrium systems with 
 ≈ 600.

The 
-axis is important because experiments have shown that simply increasing
the system size with all other parameters held fixed can induce interesting dynam-
ics such as a transition from a stationary to chaotic behavior. This was first shown
in a seminal experiment of Guenter Ahlers and Robert Behringer in 1978, when
they studied the dynamics of a convecting fluid (liquid helium at the cryogenic
temperature of 4 K) just above the onset of convection for several cylindrical con-
tainers whose aspect ratios 
 (ratio of radius to depth) varied from 
 = 2.1 to

 = 57. Ahlers and Behringer then discovered that simply making a convection
system larger and larger for a fixed Rayleigh number was sufficient to cause the
dynamics to eventually become chaotic. This discovery has since been verified
more carefully and in other nonequilibrium systems and is now considered a gen-
eral, although poorly understood, feature of sustained nonequilibrium systems. We
note that although many systems cannot be driven strongly from equilibrium, at
least in principle all nonequilibrium systems can be made arbitrarily large. Explor-
ing the large-
 limit is therefore experimentally and theoretically interesting for
many nonequilibrium systems.

Finally, the third axis labeled N indicates the number of distinct components that
interact at each point in a given system. This number can usually be determined by
inspection of the mathematical equations (if known) by simply counting the number
of distinct fields. For example, a complete mathematical description of a Rayleigh–
Bénard experiment involves five coupled fields – the fluid pressure p(x, t), the fluid
temperature T (x, t), and the three components of the fluid’s velocity field vi(x, t)
for i = x, y, and z – and so N = 5 for a convecting fluid. Biological, ecologi-
cal, economic, and chemical systems are often characterized by large values of N
so one can think of the N -axis as the “biological” axis for the space of nonequi-
librium systems. Nonequilibrium systems with large values of N are perhaps the
least well understood and are associated with some of the most interesting current
scientific questions. Did life arise on Earth by a spontaneous self-organization in
some primordial soup consisting of many chemicals? What determines the number
of species in a large ecosystem? How do the many genes coordinate their dynamics
and so guide the development of an organism over its lifetime? How does a human
brain of 1010 neurons assemble itself and how do these neurons with their network
of 1013 connections act dynamically to produce our cognitive abilities of pattern
recognition, associative memory, language, and creative thinking?

Figure 1.20 suggests a simple strategy for investigating nonequilibrium systems,
which is to allow only one of the three variables N , R, and 
 to become large
at a time. (In contrast, the physical systems studied in an introductory nonlinear
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dynamics course correspond to having all three variables small or moderate at the
same time, and many of the natural systems discussed in Section 1.3.1 have all three
variables large at the same time.) This book is largely concerned with phenomena
for large values of 
, and small to moderate values of N and R, as indicated by the
thin vertical arrow near the 
-axis in Fig. 1.20. Although this regime might seem
excessively restricted, experiments like those discussed in Section 1.3.2 show that
there is an enormous richness of dynamics in this regime and so there is, if anything,
an excess of phenomena to understand. Much future work will be needed, however,
to explore the regimes corresponding to two or three of these variables having large
values simultaneously.

In this book, we will therefore study mainly systems with large 
 and moderate
values of R and N . However, there are some further assumptions to make if we
are to obtain experimental systems that are as simple as possible and for which the
associated theory is manageable. We will emphasize experimental systems that:

(i) are large in one or more spatial directions so that the influence of lateral boundary
conditions on pattern formation can be reduced, simplifying subsequent theoretical
analysis.

(ii) are homogeneous so that the pattern formation is intrinsic rather than driven by inho-
mogeneities. Coating the floor and ceiling of a room with flat uniform layers of copper
(Fig. 1.1) was an example of how an experimental system could be made spatially
homogeneous. Studying convection over a bumpy floor would be less instructive than
convection over a homogeneous floor since the bumps influence the pattern formation
and their influence would have to be studied as a separate problem.

(iii) involve few fields (small N ) which reduces the mathematical and computational effort.
For nearly all examples discussed in this book, N will be 6 or less.

(iv) have local space-time interactions, a technical mathematical assumption that the
dynamical equations involve only fields and finitely many spatial and temporal
derivatives of the fields. This assumption is mainly a convenience for theorists and
computational scientists since it reduces the mathematical effort needed to analyze
the system. Most systems discussed in Section 1.3 have such local interactions so
this assumption is not a severe restriction. An example of a nonequilibrium system
with nonlocal interactions would be neural tissue since a given neuron can connect
to remote neurons as well as to neighboring neurons. Further, there are various time
delays associated with the finite propagation speed of signals between neurons. The
dynamics then depends nonlocally on information over some time into the past and
the mathematical description involves delay-differential equations that can be hard to
analyze.

All the systems we will discuss in detail satisfy these basic criteria. In addition the
following conditions are also desirable. The systems should
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(i) be described by known equations so that quantitative comparisons between theory,
numerics, and experiment are feasible;

(ii) be well characterized, for example the parameters changing the behavior should be
easily determined, and the geometry and boundary conditions should be accurately
prescribed; and

(iii) permit easy diagnosis, allowing accurate quantitative measurements of one or more
of the fields relevant to the pattern formation.

Historically, fluid systems have been found to approach many of these ideals.
First, many fluid systems have few interacting components (velocity and pressure
and sometimes temperature or concentration fields). Second, the fluid dynamics
is described by mathematical equations such as the Navier–Stokes equations that
experiments have confirmed to be quantitatively accurate over a large range of
parameters. Third, the fluid equations involve just a few parameters such as the
kinematic viscosity ν or thermal diffusivity κ and these parameters can be measured
to high accuracy by separate experiments in which issues of pattern formation do
not arise. Fourth, fluids are often transparent and so visualization of their spatial
structure is possible at any given time. Finally, experiments have shown that many
phenomena observed in non-fluid nonequilibrium experiments often have some
analog in a fluid experiment so one can study general features of nonequilibrium
phenomena using some fluid experiment.

Of all the possible fluid experiments, Rayleigh–Bénard convection has been espe-
cially favored in basic research because the fluid is in contact with time-independent
and spatially homogeneous boundaries that are especially easy to characterize and
to maintain. In other fluid experiments (e.g. Fig. 1.11 or Fig. 1.16), the fluid is set
in motion by some pump or motor that oscillates and these oscillations can be an
additional source of driving that complicates the identification of intrinsic pattern
formation. We do note that steady technological improvements allow increasingly
well-controlled experiments on more exotic systems such as chemical reactions
in a gel layer (fed by opposing reservoirs) or on a carefully prepared rectangular
slab of heart muscle. The possibilities for careful comparisons between theory and
experiment are rapidly improving.

1.6 Nonequilibrium systems not discussed in this book

For lack of space, time, and expertise, we cannot reasonably address all the nonequi-
librium systems that have been studied or even all the systems that have received
the deep scrutiny of the research community. Some of the topics that we will leave
out include the following:

Quenched states: If the driving of a nonequilibrium system is turned off sufficiently
quickly or if a parameter describing some equilibrium system is abruptly changed
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to some new value (e.g. if the temperature of a liquid is quickly decreased below its
freezing point), the system can “freeze” into a so-called quenched state that is often
disordered and that can take a long time to return to thermodynamic equilibrium.
Quenched states are technically nonequilibrium but differ from the systems discussed
in this book in that they are not sustained systems.There are many interesting questions
concerning how a quenched state approaches its usually ordered equilibrium limit,
e.g. by the formation of small ordered domains that grow in size at certain rates. Two
examples of quenched states are glass (like that found in a window) and a soap-bubble
foam that coarsens over time.

Pattern formation by breakdown: Some patterns in nature are formed by some stress
slowly increasing to the point that some threshold is crossed, at which point the
medium relaxes quickly by creating a pattern. Examples include cracks propagating
through a brittle material, electrical breakdown of an insulator from a high-voltage
spark, and the occurrence of an earthquake in response to the buildup of stress in a
tectonic plate.

Fully developed fluid turbulence: In our discussion of Fig. 1.20 above, we observed
that fluids are one of the few continuous media that can be driven strongly out of
equilibrium. There is in fact extensive theory, experiment, and applications in the
fully developed fluid turbulence regime of large R, moderate N , and moderate 
.
However a reasonable discussion would be lengthy and technical to the point of almost
requiring a book of its own. Also, the subject of high-Reynolds-number turbulence is
sufficiently special to fluids that it falls outside our intent to discuss mainly ideas and
mechanisms that apply to several nonequilibrium systems.

Adaptive systems: Economic, ecological, and social systems differ from many of the
systems discussed in the book in that the rules under which the components interact
change over time, the systems can “adapt” to changes in their environment. One
example is the evolutionary development of language and increased intelligence in
homo sapiens which greatly changed the rules of how humans interact with each other
and with the world.

1.7 Conclusion

This has been a long but important chapter. We have introduced and discussed
representative examples of pattern formation and dynamics in sustained nonequi-
librium systems, and have identified questions to pursue in later chapters. The
experimental results discussed in Section 1.3 are an especially valuable source
of insight and direction since mathematical theory and computer simulations still
lag behind experiment in being able to discover the properties of pattern-forming
systems. In the following chapters, we develop the conceptual, analytical, and
numerical frameworks to understand sustained nonequilibrium spatially extended
systems.
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1.8 Further reading

(i) A comprehensive and broad survey of pattern-formation research, although at a more
advanced level than this book, is “Pattern formation outside of equilibrium” by Cross
and Hohenberg [25]. This article is a good place to find discussions of pattern-
forming systems that are not mentioned in this book, to see deeper discussions of
pattern-forming systems, and to see many applications and discussions of theory to
experimental systems.

(ii) Many examples of patterns are discussed at a non-technical level in the book by Ball
The Self-Made Tapestry: Pattern Formation in Nature [9].

(iii) An introductory article on the large-scale structure of the Universe is “Mapping the
universe” by Landy [61].

(iv) Many beautiful photographs showing the enormous diversity of snowflakes can be
found in the book The Art of the Snowflake: A Photographic Album by Libbrecht [64].

(v) A classic paper in pattern formation in chemical reactions and the possible relevance
to morphogenesis is Turing’s “The chemical basis of morphogenesis” [106].

(vi) A history of pattern formation in chemical systems is given in the first chapter of
Epstein and Pojman’s book [34]. If you have access to a chemistry laboratory, you
can explore the Belousov–Zhabotinsky reaction by following the recipe given in the
appendix of the book by Ball [9].

(vii) For an introduction to low-dimensional dynamical systems see Nonlinear Dynamics
and Chaos by Strogatz [99].

Some articles on specific topics discussed in this chapter (in addition to those
referenced in the figure captions) are listed below.

(i) The thermosyphon: “Nonlinear dynamics of a convection loop: a quantitative
comparison of experiment with theory” by Gorman et al. [41].

(ii) Cracks and fracture patterns: “How things break” by Marder and Fineberg [68].
(iii) The importance of aspect ratio in the onset of chaos: “The Rayleigh–Bénard instability

and the evolution of turbulence” by Ahlers and Behringer [1].
(iv) Spiral defect chaos: “Spiral defect chaos in large-aspect-ratio Rayleigh–Bénard

convection” by Morris et al. [77].

Exercises

1.1 End of the Universe: In Section 1.1, the interesting structure of the Universe
was traced to the fact that the Universe was still young and evolving. But
will the Universe ever stop expanding and reach an equilibrium state? If so,
what kind of structure will exist in such a Universe? What might happen
to the Universe in the long term has been discussed in a fascinating article
“Time without end: Physics and Biology in an open universe” by the physicist
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Freeman Dyson in the article Reviews of Modern Physics 51, 447 (1979). Read
this article and then answer the following questions:

(a) What is the difference between an “open” and “closed” universe and
what are the implications for whether the universe will ever reach
thermodynamic equilibrium?

(b) What experimental quantities need to be measured to determine whether
our Universe is open or closed? According to current experimental
evidence, is our Universe open?

(c) According to Dyson, how long will it take our Universe to reach
thermodynamic equilibrium, assuming that it is open?

(d) Can life, as we know it on Earth, persist arbitrarily into the future if our
Universe is open and approaching an equilibrium state?

1.2 Just six numbers: In the book Just Six Numbers: The Deep Forces That
Shape the Universe (Basic Books, New York, 1999), cosmologist Martin Rees
argues that our Universe can form interesting patterns – and life in particular –
only because certain key parameters that describe the Universe fall within
extremely narrow ranges of values. For example, one parameter is the fractional
energy ε = 0.004 released when four hydrogen nuclei fuse to form a helium
nucleus in the core of a star. If this value were just a tiny bit smaller, condensing
clouds of gas would never ignite to become a star. If just a tiny bit bigger, stars
would burn up so quickly that life would not have enough time to evolve.

Skim through this book and explain briefly what are the six parameters that
Rees has identified as being critical to the existence of pattern formation in the
Universe. Discuss qualitatively how the Universe would be different from its
present form if these parameters had significantly different values.

1.3 A sprinkling of points: pattern or not? Like the stars in Earth’s sky, some
patterns are less a geometric lattice (or distortions of such a lattice) than a
statistical deviation from randomness. To explore this point, assume that you
are given a data file that contains the coordinates (xi, yi) of 4000 points in a unit
square (see Fig. 1.21). Discuss how to determine whether these dots constitute
a “pattern” or are “random,” in which case we would not expect any meaningful
structure. What are some hypotheses that a random distribution would satisfy?
How would you test the consistency of the data with your hypotheses? Two
possibilities to explore are a chi-squared test [89] and a wave-number spectrum.

1.4 Properties of the Rayleigh number: Answer the following questions by
thinking about the criterion Eq. (1.1) for the onset of convection.

(a) Two identical convection systems of depth d are filled with air and mercury
respectively at room temperature. Using the values in Table 1.1, determine
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Fig. 1.21 Exercise 1.3: Do these 4000 dots in a unit square constitute a “pattern”
that deviates statistically from points thrown down randomly and uniformly?

which fluid will start to convect first as the temperature difference �T is
increased in small constant steps through onset.

(b) The bottom plate of a certain wide square convection cell is machined to
have a square bump that is 5% of the fluid depth in height and four times
the depth of the fluid in width as shown schematically in this figure:

The bump is far away from the lateral walls. As the temperature difference
is increased in small constant steps starting with the stable motionless fluid,
where will convection first start in this system? Guess and then sketch what
kind of pattern will be observed when the convection rolls first appear.

1.5 Suitability of a room for a convection experiment:

(a) Assume that the room in Fig. 1.1 has a height of d = 3 m, that the floor and
ceiling are isothermal surfaces of temperature T1 and T2 respectively (both
close to room temperature T = 300 K), and that high-precision laboratory
experiments can control a temperature difference to at best about one part
in 104. Determine whether or not this room is suitable for convection
experiments.

(b) An unstated assumption for almost any laboratory experiment is that the
experiment can be finished within a practical amount of time, say a week or
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less. Theory discussed later in the book shows that one of the slowest time
scales associated with convection is the so-called vertical thermal diffusion
time tv = d2/κ , where d is the depth of the fluid and κ is the fluid’s thermal
diffusivity. This is the time for a localized temperature perturbation near,
say, the bottom plate to be detected by a probe near the top plate if the
perturbation spreads out purely by diffusion. There is an even longer time
scale called the horizontal thermal diffusion time th = (L/d)2tv = 
2tv,
which is the time taken for a localized temperature perturbation on one
side of the system to be detected on the far side of the system a lateral
distance L away if the perturbation again spreads out purely by diffusion.
Any given convection experiment, or simulation of such an experiment,
needs to span many multiples of these time scales in order for enough time
to pass that transients die out and a statistically stationary state is attained.

1. What are the times tv and th in units of days for air in a square room of
height d = 3 m and width L = 8 m? Are these reasonable time scales
for a convection experiment?

2. Answer these same questions for air in a laboratory convection
apparatus with d = 1 mm and L = 5 cm.

1.6 Temperature profile and heat transport of a conducting fluid:

(a) For Rayleigh numbers in the range 0 < R < Rc, plot the vertical tempera-
ture profile T (z) of the air in Fig. 1.1. Assume z = 0 is the floor and z = d
is the ceiling.

(b) For this same regime of Rayleigh number, plot the heat flux H = H (R)

(heat energy per unit area per unit time) through the ceiling.
(c) To get a feeling for the order of magnitude of the heat transport, estimate

the total heat transported by the air through the ceiling for a square room
of height d = 3 m and width L = 5 m, when the temperature difference is
the critical value �Tc. For comparison, a typical room heating device has
a power consumption of a few kilowatts (thousands of joules per second).

(d) When R > Rc so that the air in Fig. 1.1 starts to convect, discuss and
sketch qualitatively how the temperature profile and total heat transport
will change.

(e) Invent and explain a method to measure the instantaneous heat flux H (t)
experimentally for a fixed Rayleigh number R.

Hint: For a continuous medium with thermal conductivity K the heat flux
is H = −K ∇T (units of energy per unit time per unit area). Assuming
most of the air in the room is close to room temperature T = 293 K, you
can use the value K = 2.5 × 10−6 J m−1 s−1 K−1 everywhere inside the
room.
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1.7 Scaling of time, length, and magnitude scales for the Swift–Hohenberg
equation: To gain experience simplifying a dynamical equation and iden-
tifying dimensionless parameters, consider the following partial differential
equation for a real-valued field u(x, t) that depends on time t and one spatial
coordinate x:

τ0 ∂tu(x, t) = ru − ξ4
0

(
q4

0 + 2q2
0 ∂2

x + ∂4
x

)
u − g0u3. (E1.1)

This is the so-called Swift–Hohenberg equation which we will discuss in
Chapters 2 and 5 as one of the more important models of pattern formation.
Eq. (E1.1) seems to have five distinct parameters, namely the time scale τ0, the
coherence length ξ0, the critical wave number q0, the nonlinear strength g0,
and the control parameter r.

By a clever choice of time, length, and magnitude scales t0, x0, and u0, i.e. by
changing variables from t, x, and u to the scaled variables τ , y, and v by the
equations

t = t0τ , x = x0y, u = u0v, (E1.2)

and by redefining the parameter r to a new value r̂, show that Eq. (E1.1) can
be written in a dimensionless form with only one parameter:

∂τ v = r̂v −
(

1 + 2 ∂2
y + ∂4

y

)
v − v3. (E1.3)

This is a substantial simplification since the mathematical and numerical
properties of this equation can be explored as a function of a single parameter r̂.

1.8 Applications of the Reynolds number: For problems in which an isothermal
fluid flows through a pipe or past an object like a cylinder, an analysis of the
Navier–Stokes equations reveals a dimensionless stress parameter called the
Reynolds number R,

R = vL

ν
, (E1.4)

where v is a characteristic magnitude of the fluid’s velocity field (say the
maximum speed of the fluid before it encounters some obstacle), L is the size
of the object with which the fluid interacts (e.g. the diameter of the pipe or of
the cylinder), and ν is the kinematic viscosity of the fluid, the same parameter
that appears in the Rayleigh number Eq. (1.1).

For small flow speeds corresponding to R < 1, the fluid is usually lam-
inar, i.e. time independent and without an interesting spatial structure (the
stream lines are approximately parallel). For Reynolds numbers larger than
about 1, laminar flows usually become unstable and some new kind of pattern
or dynamics occur. When R becomes larger than about 1000, the fluid often
becomes chaotic in time and irregular in space.



Exercises 55

The following questions give you a chance to appreciate the many useful
predictions that can be made by studying a parameter like Eq. (E1.4).

(a) Show that the Reynolds number is a dimensionless quantity and so has the
same value in any system of units.

(b) For an airplane traveling at v = 500 km/hour, will the air flow over the
wing be laminar or turbulent?

(c) As you walk around a room, show that the air in the vicinity of your foot
will be turbulent. This implies that a cockroach will need some way to
locate your foot in the midst of a turbulent flow to avoid being stepped on.

(d) By flipping a coin, estimate the speed with which it falls and the speed
with which it rotates and then determine whether fluid turbulence plays a
role in the supposedly “random” behavior of flipping a coin to call heads
or tails.

(e) From a human physiology book or from the web, find the typical speed
of blood flowing through your arteries and through your heart. Does the
blood flow in any of your arteries become turbulent? What about through
a heart valve?

(f) When the wind blows transversely past a telephone wire, you sometimes
hear an eerie whistling sound called an aeolian tune. Using the kinematic
viscosity of air at room temperature from Table 1.1 and a wire diameter of
L = 2 mm, what is the smallest wind velocity for which you would expect
to hear an aeolian tune?

1.9 Simple experiment to demonstrate the no-slip fluid boundary condition:
To convince yourself of the fact that a fluid’s velocity goes to zero at a material
wall in the frame of reference of that wall, try the following simple experiment.
Get a desktop fan and sprinkle some talcum powder (or any fine powder) over
the blades of the fan. Then turn the fan on so that the blades rotate at high
speed for several seconds and switch off the fan. Has the talcum powder been
blown completely off the blades?


